Objective: To increase prokaryotic expression level of IFN-alpha 1C gene through the quantitative theory of translational control and the translational enhancer sequence.
Methods: Stepwise polymerase chain reaction (PCR) was used to alter the 5 terminal cDNA sequence of IFN-alpha 1C in three different grades of base mutation. In this way, the free energy (Delta G) of the secondary structure in translational initiation region (TIR) was decreased gradually. An expression plasmid (pBVE) was constructed to contain the translational enhancer cDNA sequence by modifying pBV220 upstream of the SD region.
Results: The expression levels of three kinds of IFN-alpha 1C modified gene were all increased. Furthermore, it presented an increasing trend with decreasing in delta G varying from -50,241.6 to -22,190.0 J/mol. The highest expression was 2.43 x 10(8) U/L, covering twelve times more than its original cDNA. IFN-alpha 1C gene and its modified cDNA was inserted into pBVE as reporting genes. E.Coli cells harbouring pBVE/IFN-alpha 1Cs cDNA produced two to five times more IFN than cells harbouring pBV220/IFN-alpha 1Cs.
Conclusions: pBVE containing translational enhancer is a high level prokaryotic expression vector. The theory of quantitative translational control can effectively be used to enhance the IFN-alpha 1C gene expression level in E.coli.
Download full-text PDF |
Source |
---|
Front Pharmacol
January 2025
Human Molecular Genetics Research Unit, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland.
Cardiovascular diseases (CVDs) include atherosclerosis, which is an inflammatory disease of large and medium vessels that leads to atherosclerotic plaque formation. The key factors contributing to the onset and progression of atherosclerosis include the pro-inflammatory cytokines interferon (IFN)α and IFNγ and the pattern recognition receptor (PRR) Toll-like receptor 4 (TLR4). Together, they trigger the activation of IFN regulatory factors (IRFs) and signal transducer and activator of transcription (STAT)s.
View Article and Find Full Text PDFComp Biochem Physiol B Biochem Mol Biol
January 2025
Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand; Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai 50200, Thailand. Electronic address:
This experiment aimed to determine the efficacy of fulvic acid (FLA) on growth performance, innate immune system, antioxidant parameters, and expression of immune and antioxidant-related genes in zebrafish (Danio rerio). To this end, 12 tanks (3 per group), each containing 50 zebrafish (with an average weight of 85.7 ± 10.
View Article and Find Full Text PDFVet Microbiol
December 2024
Chongqing Academy of Animal Sciences, Chongqing 402460, China; Southwest University, College of Veterinary Medicine, Chongqing 400715, China; Department of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; State Key Laboratory of Silkworm Genome Biology, Chongqing 400715, China. Electronic address:
lncRNAs play important regulatory roles in almost every aspect of physiological processes. However, the mechanisms by which animal-encoded lncRNAs regulate the interaction of viral infection with host antiviral immunity are unknown. To explore the mechanisms of lncRNA regulation of SVV infection and interferon responses.
View Article and Find Full Text PDFImmune Netw
December 2024
Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea.
Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Liver Diseases Branch, NIDDK, NIH, Bethesda, Maryland, United States of America.
HBV genotype A has two major subtypes, A1 (commonly in Africa) and A2 (commonly in Europe) with only 4% nucleotide differences. Individuals infected with these two subtypes appear to have different clinical manifestations and virologic features. Whether such a difference results from the virus or host has not been established.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!