Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background And Objective: Approximately 105 million people worldwide have glaucoma, and approximately 5 million are blind from its complications. Current surgical techniques often fail because of scarring of the conjunctival tissue, Tenon's tissue, or both. Femtosecond lasers can create highly precise incisions beneath the surface of a tissue, as previously demonstrated in the transparent cornea. Because the sclera is a highly scattering subsurface, photodisruption has not been previously possible.
Materials And Methods: To overcome scattering, a laser operating at 1,700 nm was used to make subsurface cuts in human sclera in vitro via photodisruption.
Results: Sub-10-microm width incisions were created beneath the surface without collateral tissue effects, something not possible with shorter wavelengths used to date in corneal applications with the femtosecond laser.
Conclusion: Completely subsurface photodisruptions can be accomplished in human sclera in vitro. In vivo studies are required to evaluate the potential use of this technology for scleral applications.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!