A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplication of certain soil micro-organisms under simulated Martian conditions. | LitMetric

Multiplication of certain soil micro-organisms under simulated Martian conditions.

Life Sci Space Res

Academy of Sciences, Moscow, USSR.

Published: August 2003

According to earlier observations, severe UV irradiation kills all micro-organisms in a chamber with simulated Martian conditions. However, even a thin soil layer protects buried micro-organisms from UV irradiation. The chief limiting factor for microbial multiplication under simulated Martian conditions seems to be soil humidity. Several micro-organisms were isolated from harsh environments (e.g., from Arctic, Antarctic desert and high-mountain soil samples). A strain of an oligonitrophilic mycococcus, isolated from Dixon Island, proved to be most resistant to low humidity. It multiplied in a mixture of limonite (maximal hygroscopical humidity 3.8%) + 2% (w/w) garden soil kept in a chamber simulating Martian conditions. Total cell count increased 7.6-fold and, in some experiments, 26-fold in 14 days. The oligonitrophilic mycococcus was able to grow even at a humidity level of 2.5%, that is less than maximal hygroscopical (3.8%). Under these conditions cell count increased 10-fold in 36 days. Thus, it was shown that even in Earth soils there are xerophytic micro-organisms which are able to multiply in limonite of low humidity. These data might correct our current concepts concerning microbial water requirements. One might speculate that Martian micro-organisms belong to xerophytic species.

Download full-text PDF

Source

Publication Analysis

Top Keywords

martian conditions
16
simulated martian
12
oligonitrophilic mycococcus
8
low humidity
8
maximal hygroscopical
8
cell count
8
count increased
8
micro-organisms
6
martian
5
conditions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!