Microarrays are at the center of a revolution in biotechnology, allowing researchers to screen tens of thousands of genes simultaneously. Typically, they have been used in exploratory research to help formulate hypotheses. In most cases, this phase is followed by a more focused, hypothesis-driven stage in which certain specific biological processes and pathways are thought to be involved. Since a single biological process can still involve hundreds of genes, microarrays are still the preferred approach as proven by the availability of focused arrays from several manufacturers. Because focused arrays from different manufacturers use different sets of genes, each array will represent any given regulatory pathway to a different extent. We argue that a functional analysis of the arrays available should be the most important criterion used in the array selection. We developed Onto-Compare as a database that can provide this functionality, based on the Gene Ontology Consortium nomenclature. We used this tool to compare several arrays focused on apoptosis, oncogenes, and tumor suppressors. We considered arrays from BD Biosciences Clontech, PerkinElmer, Sigma-Genosys, and SuperArray. We showed that among the oncogene arrays, the PerkinElmer MICROMAX oncogene microarray has a better representation of oncogenesis, protein phosphorylation, and negative control of cell proliferation. The comparison of the apoptosis arrays showed that most apoptosis-related biological processes are equally well represented on the arrays considered. However, functional categories such as immune response, cell-cell signaling, cell-surface receptor linked signal transduction, and interleukins are better represented on the Sigma-Genoys Panorama human apoptosis array. At the same time, processes such as cell cycle control, oncogenesis, and negative control of cell proliferation are better represented on the BD Biosciences Clontech Atlas Select human apoptosis array.
Download full-text PDF |
Source |
---|
Respir Res
September 2006
General Clinical Research Unit, Mater Misericordiae University Hospital, School of Medicine and Medical Sciences, University College Dublin, Dublin 7, Ireland.
The molecular mechanisms of Idiopathic Pulmonary Fibrosis (IPF) remain elusive. Transforming Growth Factor beta 1(TGF-beta1) is a key effector cytokine in the development of lung fibrosis. We used microarray and computational biology strategies to identify genes whose expression is significantly altered in alveolar epithelial cells (A549) in response to TGF-beta1, IL-4 and IL-13 and Epstein Barr virus.
View Article and Find Full Text PDFNucleic Acids Res
July 2006
Department of Computer Science, Wayne State University, 431 State Hall, Detroit, MI 48202, USA.
The Onto-Tools suite is composed of an annotation database and eight complementary, web-accessible data mining tools: Onto-Express, Onto-Compare, Onto-Design, Onto-Translate, Onto-Miner, Pathway-Express, Promoter-Express and nsSNPCounter. Promoter-Express is a new tool added to the Onto-Tools ensemble that facilitates the identification of transcription factor binding sites active in specific conditions. nsSNPCounter is another new tool that allows computation and analysis of synonymous and non-synonymous codon substitutions for studying evolutionary rates of protein coding genes.
View Article and Find Full Text PDFNucleic Acids Res
July 2005
Department of Computer Science, Wayne State University, 431 State Hall, Detroit, MI 48202, USA.
The Onto-Tools suite is composed of an annotation database and six seamlessly integrated, web-accessible data mining tools: Onto-Express, Onto-Compare, Onto-Design, Onto-Translate, Onto-Miner and Pathway-Express. The Onto-Tools database has been expanded to include various types of data from 12 new databases. Our database now integrates different types of genomic data from 19 sequence, gene, protein and annotation databases.
View Article and Find Full Text PDFNucleic Acids Res
July 2004
Department of Computer Science, Wayne State University, 431 State Hall, Detroit, MI 48202, USA.
The Onto-Tools suite is composed of an annotation database and five seamlessly integrated web-accessible data mining tools: Onto-Express (OE), Onto-Compare (OC), Onto-Design (OD), Onto-Translate (OT) and Onto-Miner (OM). OM is a new tool that provides a unified access point and an application programming interface for most annotations available. Our database has been enhanced with more than 120 new commercial microarrays and annotations for Rattus norvegicus, Drosophila melanogaster and Carnorhabditis elegans.
View Article and Find Full Text PDFNucleic Acids Res
July 2003
Department of Computer Science, Wayne State University, 431 State Hall, Detroit, MI 48202, USA.
Onto-Tools is a set of four seamlessly integrated databases: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Onto-Express is able to automatically translate lists of genes found to be differentially regulated in a given condition into functional profiles characterizing the impact of the condition studied upon various biological processes and pathways. OE constructs functional profiles (using Gene Ontology terms) for the following categories: biochemical function, biological process, cellular role, cellular component, molecular function and chromosome location.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!