Objective: To investigate whether the Agouti-related protein (Agrp), the melanocortin receptor antagonist, alters oxygen consumption, as a measure of energy expenditure.
Design: A 7-day intracerebroventricular administration of Agrp (1 nmol/day) in rats.
Measurements: Oxygen consumption was determined in closed-circuit respirometers on days 1 and 8. BRL-35135, a beta3-adrenoreceptor agonist known to activate the brown adipose tissue (BAT) thermogenesis directly and increase core temperature, was administered i.p. (40 microg/kg) on day 9 to challenge functionally the BAT.
Results: Agrp treatment caused a 54% increase in daily food intake and a 12% increase in body weight. An 8% decrease in VO(2) measurements was observed following ICV Agrp treatment on day 1. A similar decrease (7%) was observed on day 8. BRL-35135 stimulated colonic temperature in control rats. However, in the rats that had previously been treated with Agrp this effect was significantly blunted.
Conclusion: Chronic CNS administration of Agrp decreases oxygen consumption and decreases the capacity of BAT to expend energy. The obesity observed following CNS administration of Agrp is the result of decreased energy expenditure and increased food intake.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.ijo.0802253 | DOI Listing |
Curr Vasc Pharmacol
January 2025
Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
Resveratrol [RES] is a polyphenolic stilbene with therapeutic potential owing to its antioxidant, anti-inflammatory, neuroprotective, and cardioprotective properties. However, the very poor oral bioavailability, fast metabolism, and extremely low stability under physiological conditions pose a severe detriment to the clinical use of RES. This newly developed field of nanotechnology has led to the formulation of RES into nanoformulations with the goal of overcoming metabolicpharmacokinetic limitations and enhancing the targeted transport of RES to the central nervous system [CNS].
View Article and Find Full Text PDFJ Infect Chemother
January 2025
Department of Hematology and Oncology, Okayama University Hospital, Okayama, Japan; Department of Hematology, Oncology and Respiratory medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
Enterovirus A71 (EV-A71) is a major pathogen responsible for hand, foot, and mouth disease (HFMD) in infants and children. EV-A71 infection represents an epidemic in the Asia-Pacific region, and can cause serious central nervous system (CNS) infections in immunocompromised patients that can result in paralysis, disability, or death. There have been few reports in the literature concerning EV-A71 CNS infections after allogeneic hematopoietic stem cell transplantation (allo-HSCT) in adult patients.
View Article and Find Full Text PDFActa Biomater
January 2025
School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, 510275, China. Electronic address:
Following cerebral ischemia, reperfusion injury can worsen ischemia-induced functional, metabolic disturbances, and pathological damage upon blood flow restoration, potentially leading to irreversible harm. Yet, there's a dearth of advanced, localized drug delivery systems ensuring active pharmaceutical ingredient (API) efficacy in cerebral protection during ischemia-reperfusion. This study introduces a multivalent bioadhesive nanoparticle-cluster, merging bioadhesive nanoparticles (BNPs) with dendritic polyamidoamine (PAMAM), enhancing nose-to-brain delivery and brain protection efficacy against cerebral ischemia-reperfusion injuries (CIRI).
View Article and Find Full Text PDFOncol Res
January 2025
Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, India.
Background: To date, there is no effective cure for the highly malignant brain tumor glioblastoma (GBM). GBM is the most common, aggressive central nervous system tumor (CNS). It commonly originates in glial cells such as microglia, oligodendroglia, astrocytes, or subpopulations of cancer stem cells (CSCs).
View Article and Find Full Text PDFJ Med Virol
February 2025
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
The determinants of varicella-zoster virus (VZV)-associated central nervous system (CNS) infection have not been fully elucidated. This study aimed to investigate the incidence and risk factors, including immunosuppression, for different manifestations of VZV-associated CNS infection. Patient registers were used to include adults diagnosed with VZV-associated CNS infections between 2010 and 2019 in Sweden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!