The blood-brain barrier (BBB) is a physical and metabolic barrier between the brain and the systemic circulation, which functions to protect the brain from circulating drugs, toxins, and xenobiotics. ATP-dependent multidrug transporters such as P-glycoprotein (Pgp; ABCB1), which are found in the apical (luminal) membranes of brain capillary endothelial cells, are thought to play an important role in BBB function by limiting drug penetration into the brain. More recently, the multidrug resistance protein MRP2 (ABCC2) has been found in the luminal surface of brain capillary endothelium of different species, including humans. In endothelial cells from patients with drug-resistant epilepsy, MRP2 was shown to be overexpressed, indicating that it may be critically involved in multidrug resistance of such patients. However, the role of MRP2 in drug disposition into the brain is defined poorly. Herein, we used different strategies to study the contribution of MRP2 to BBB function. First, the MRP inhibitor probenecid was shown to increase extracellular brain levels of the major antiepileptic drug phenytoin in rats, indicating that phenytoin is a substrate of MRP2 in the BBB. This was substantiated by using MRP2-deficient TR- rats, in which extracellular brain levels of phenytoin were significantly higher compared with the normal background strain. In the kindling model of epilepsy, coadministration of probenecid significantly increased the anticonvulsant activity of phenytoin. In kindled MRP2-deficient rats, phenytoin exerted a markedly higher anticonvulsant activity than in normal rats. These data indicate that MRP2 substantially contributes to BBB function.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/jpet.103.049858 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Haematology and Oncology, Shenzhen Children's Hospital, Shenzhen, China.
Background: Methicillin-resistant (MRSA) poses a significant challenge in clinical environments due to its resistance to standard antibiotics. Protein A (SpA), a crucial virulence factor of MRSA, undermines host immune responses, making it an attractive target for vaccine development. This study aimed to identify potential epitopes within SpA that could elicit robust immune responses, ultimately contributing to the combat against multidrug-resistant (MDR) MRSA.
View Article and Find Full Text PDFIran J Basic Med Sci
January 2025
Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
Gliomas are the most common lethal tumors of the brain associated with a poor prognosis and increased resistance to chemo-radiotherapy. Circular RNAs (circRNAs), newly identified noncoding RNAs, have appeared as critical regulators of therapeutic resistance among multiple cancers and gliomas. Since circRNAs are aberrantly expressed in glioma and may act as promoters or inhibitors of therapeutic resistance, we categorized alterations of these specific RNAs expression in therapy resistant-glioma in three different classes, including chemoresistance, radioresistance, and glioma stem cell (GSC)-regulation.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Hematology, The Sixth Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China.
CD7-targeted chimeric antigen receptor-T (CAR-T) cell therapy has shown great promise in the treatment of relapsed/refractory T-cell acute lymphoblastic leukemia (T-ALL). In this study, we reported a case of a 34-year-old male patient with T-ALL who finally developed multi-line drug resistance and refractoriness after multiple lines of high-intensity chemotherapy. After physician evaluation, this patient received allogeneic hematopoietic stem cell transplantation (allo-HSCT).
View Article and Find Full Text PDFThe rise of drug-resistant fungal pathogens, including , highlights the urgent need for novel antifungal therapies. We developed a cost-effective platform combining microbial extract prefractionation with rapid MS/MS-bioinformatics-based dereplication to efficiently prioritize new antifungal scaffolds. Screening and revealed novel lipopeptaibiotics, coniotins, from WAC11161, which were undetectable in crude extracts.
View Article and Find Full Text PDFExpert Opin Drug Deliv
January 2025
Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California, USA.
Introduction: Cyclic antimicrobial peptides (CAMPs) are gaining attention as promising candidates in advanced drug delivery systems due to their structural stability, resistance to proteolytic degradation, and versatile therapeutic potential. Their unique properties enable applications that extend beyond combating multidrug-resistant (MDR) pathogens. Their amphipathic and cell-penetrating properties allow them to efficiently transport drugs across cellular membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!