Glycation, one of the post-translational modifications of proteins, is a nonenzymatic reaction initiated by the primary addition of a sugar aldehyde or ketone to the amino groups of proteins. In the early stage of glycation, the synthesis of intermediates leading to the formation of Amadori compounds occurs. In the late stage, advanced glycation end products (AGE) are irreversibly formed after a complex cascade of reactions. Several AGEs have been characterized chemically, while other new compounds remain to be identified. To date, studies of the contribution of glycation to diseases have been primarily focused on its relationship to diabetes and diabetes-related complications. However, glucose-induced damage is not limited to diabetic patients. Although it does not cause rapid or remarkable cell damage, glycation advances slowly and accompanies every fundamental process of cellular metabolism. It has recently become clear that glycation also affects physiological aging and neurodegenerative diseases such as Alzheimer's disease and amyotrophic lateral sclerosis. Glycation alters the biological activity of proteins and their degradation processes. Protein cross-linking by AGE results in the formation of detergent-insoluble and protease-resistant aggregates. Such aggregates may interfere with both axonal transport and intracellular protein traffic in neurons. In addition, glycation reactions lead to the production of reactive oxygen species. Conversely, glycation is promoted by oxidative stress. We speculate on the presence of synergism between glycation and oxidative stress. In this review, we provide an outline of glycation and propose some possible mechanisms of its cytotoxicity and defense systems against it.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-0173(02)00273-4 | DOI Listing |
Sci Rep
January 2025
McColl-Lockwood Laboratory for Muscular Dystrophy Research, Carolinas Medical Center, Atrium Health Musculoskeletal Institute, 1000 Blythe Blvd. , Charlotte, NC, 28231, USA.
Dystroglycanopathy is characterized by reduced or lack of matriglycan, a cellular receptor for laminin as well as other extracellular matrix proteins. Recent studies have delineated the glycan chain structure of the matriglycan and the pathway with key components identified. FKRP functions as ribitol-5-phosphate transferase with CDP-ribitol as the substrate for the extension of the glycan chain.
View Article and Find Full Text PDFRev Recent Clin Trials
January 2025
Department of Clinical Pharmacy, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran.
Introduction: In the present study, we evaluated the impact of empagliflozin on serum levels of oxidative stress parameters in individuals with type 2 diabetes (T2DM) who also suffer from heart failure with Reduced Ejection Fraction (HFrEF).
Methods: In this prospective, single-center clinical trial, 80 patients with T2DM and HFrEF, stabilized on guideline-directed heart failure therapy and classified as New York Heart Association functional (NYHA) functional classes II or III, were randomized to receive either empagliflozin (10 mg/daily) or a matching placebo for a duration of 12 weeks. Serum levels of malondialdehyde (MDA), along with the activity of superoxide dismutase (SOD) and glutathione peroxidase (GPx), were measured at baseline and after the 12-week treatment period.
BMJ Open
January 2025
Diabetes Care Unit, Caen University Hospital, Caen cedex 09, France.
Introduction: Glycated haemoglobin (HbA1c) is currently the gold standard for assessing glycaemic control in diabetes, given the established relationship with microvascular and macrovascular complications in this condition. However, HbA1c is affected by non-glycaemic factors, while also failing to provide data on hypoglycaemic exposure and glucose variability, which are associated with adverse vascular outcomes. Continuous glucose monitoring (CGM)-derived glucose metrics provide a more comprehensive assessment of glycaemia, but their role in predicting future vascular complications remains unclear.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Nutritional Engineering, National Engineering Research Centre for Fruits and Vegetables Processing, Key Laboratory of Storage and Processing of Fruits and Vegetables, Ministry of Agriculture, Engineering Research Centre for Fruits and Vegetables Processing, Ministry of Education, China Agricultural University, Beijing 100083, China. Electronic address:
Reactive carbonyl species (RCS) are a class of compounds with one or more C = O structures with highly reactive electrophilic properties. This comprehensive review delves into the multifaceted role of RCS in thermally processed foods, where they serve as both crucial intermediates in the development of food color and flavor, as well as precursors of potentially harmful compounds. By exploring the carbonyl pool concept, the impact of RCS equilibrium on the formation and reduction of hazardous substances such as acrylamide, hydroxymethylfurfural, advanced glycation end-products, and heterocyclic amines was elucidated.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Ocean Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Jimei University, Xiamen, Fujian 361021, China; Xiamen Ocean Vocational College, Xiamen, Fujian 361100, China. Electronic address:
Food allergy incidents resulting from the consumption of Mactra quadrangularis is frequently reported. Investigating the impact of the Maillard reaction on the allergenicity of M. quadrangularis allergens is beneficial for the development of hypoallergenic mollusks aquatic products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!