The metabolic activation of a variety of quinone-based anticancer agents occurs, in part, as a result of the bioreductive activation by the flavoprotein NAD(P)H:quinone-acceptor oxidoreductase (NQO1) (EC 1.6.99.2). Using the COMPARE algorithm (http://dtp.nci.nih.gov), a significant statistical correlation has been found in the NCI in vitro anticancer drug screen between high endogenous expression of the pro-apoptotic protein BAD, NQO1 enzymatic activity, and the cytotoxicity of certain antitumor quinones. Two statistically correlated groups of quinones can be discerned: positive-correlated compounds, which are more active in cell lines expressing high baseline levels of BAD protein and NQO1 activity (e.g. the MCF-7 breast carcinoma), and negative-correlated compounds, which are more active in cell lines with undetectable levels of BAD and NQO1 activity (e.g. the HL-60 myeloid leukemia). In the present study, the relationship between quinone structure, redox cycling, and cytotoxicity in the MCF-7 and HL-60 cell lines was investigated. A good biological correlation exists between cytotoxicity and NQO1 activity, BAD protein levels and apoptosis, but not always between cytotoxicity and intracellular reactive oxygen species levels. The overall markedly increased cytotoxicity of the aziridinylbenzoquinone compounds used in this study is accompanied by apoptosis, which occurs mostly through a cytochrome c-independent pathway.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0006-2952(03)00013-3 | DOI Listing |
J Med Chem
January 2025
Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, and Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
The leukotriene B4 receptor 2 (BLT2) is a G-protein coupled receptor, which is endogenously activated by 12()-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT). BLT2 is gaining attention as a potential therapeutic target involved in various pathologies including diabetic wound healing, ophthalmic diseases, and colitis. However, validation of BLT2 as drug target requires chemical probes and pharmacological tools which will allow for application in vivo.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, J5, 68159, Mannheim, Germany.
Inflammatory processes have been implicated in the pathophysiology of depression. In human studies, inflammation has been shown to act as a critical disease modifier, promoting susceptibility to depression and modulating specific endophenotypes of depression. However, there is scant documentation of how inflammatory processes are associated with neural activity in patients with depression.
View Article and Find Full Text PDFAdv Clin Exp Med
January 2025
Department of Neurosurgery, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an Children's Hospital, China.
Background: Glioblastoma multiforme (GBM) is the most aggressive brain tumor malignancy in adults, accounting for nearly 50% of all gliomas. Current medications for GBM frequently lead to drug resistance.
Objectives: Umbelliferone (UMB) is found extensively in many plants and shows numerous pharmacological actions against inflammation, degenerative diseases and cancers.
Nat Cardiovasc Res
January 2025
Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
Beyond dyslipidemia, inflammation contributes to the development of atherosclerosis. However, intrinsic factors that counteract vascular inflammation and atherosclerosis remain scarce. Here we identify insulin-like growth factor binding protein 6 (IGFBP6) as a homeostasis-associated molecule that restrains endothelial inflammation and atherosclerosis.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of PhysioPharmacology, University of Antwerp, Antwerp, Belgium.
Heart failure is a common and deadly disease requiring new treatments. The neuregulin-1/ERBB4 pathway offers cardioprotective benefits, but using recombinant neuregulin-1 as therapy has limitations due to the need for intravenous delivery and lack of receptor specificity. We hypothesize that small-molecule activation of ERBB4 could protect against heart damage and fibrosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!