Learning long-term temporal dependencies with recurrent neural networks can be a difficult problem. It has recently been shown that a class of recurrent neural networks called NARX networks perform much better than conventional recurrent neural networks for learning certain simple long-term dependency problems. The intuitive explanation for this behavior is that the output memories of a NARX network can be manifested as jump-ahead connections in the time-unfolded network. These jump-ahead connections can propagate gradient information more efficiently, thus reducing the sensitivity of the network to long-term dependencies. This work gives empirical justification to our hypothesis that similar improvements in learning long-term dependencies can be achieved with other classes of recurrent neural network axchitectures simply by increasing the order of the embedded memory. In particular we explore the impact of learning simple long-term dependency problems on three classes of recurrent neural network architectures: globally recurrent networks, locally recurrent networks, and NARX (output feedback) networks.Comparing the performance of these architectures with different orders of embedded memory on two simple long-term dependencies problems shows that all of these classes of network architectures demonstrate significant improvement on learning long-term dependencies when the orders of embedded memory are increased. These results can be important to a user comfortable with a specific recurrent neural network architecture because simply increasing the embedding memory order of that architecture will make it more robust to the problem of long-term dependency learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0893-6080(98)00018-5 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Mathematics, Western University, London, ON N6A 3K7, Canada.
We study image segmentation using spatiotemporal dynamics in a recurrent neural network where the state of each unit is given by a complex number. We show that this network generates sophisticated spatiotemporal dynamics that can effectively divide an image into groups according to a scene's structural characteristics. We then demonstrate a simple algorithm for object segmentation that generalizes across inputs ranging from simple geometric objects in grayscale images to natural images.
View Article and Find Full Text PDFChaos
January 2025
Department of Cognitive Sciences, University of California, Irvine, California 92617, USA.
We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.
View Article and Find Full Text PDFJ Vis
January 2025
Department of Psychology, New York University, New York, NY, USA.
Active object recognition, fundamental to tasks like reading and driving, relies on the ability to make time-sensitive decisions. People exhibit a flexible tradeoff between speed and accuracy, a crucial human skill. However, current computational models struggle to incorporate time.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Florida International University, Miami, FL, USA.
Background: Alzheimer's Disease (AD) is a widespread neurodegenerative disease with Mild Cognitive Impairment (MCI) acting as an interim phase between normal cognitive state and AD. The irreversible nature of AD and the difficulty in early prediction present significant challenges for patients, caregivers, and the healthcare sector. Deep learning (DL) methods such as Recurrent Neural Networks (RNN) have been utilized to analyze Electronic Health Records (EHR) to model disease progression and predict diagnosis.
View Article and Find Full Text PDFHeliyon
November 2024
Food and Pharmacy College, Xuchang University, Xuchang, 461000, Henan, China.
Cyclin Dependent Kinase 1 (CDK1) plays a crucial role in cell cycle regulation, and dysregulation of its activity has been implicated in various cancers. Although several CDK1 inhibitors are currently in clinical trials, none have yet been approved for therapeutic use. This research utilized deep learning techniques, specifically Recurrent Neural Networks with Long Short-Term Memory (LSTM), to generate potential CDK1 inhibitors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!