We study two classes of sigmoids: the simple sigmoids, defined to be odd, asymptotically bounded, completely monotone functions in one variable, and the hyperbolic sigmoids, a proper subset of simple sigmoids and a natural generalization of the hyperbolic tangent. We obtain a complete characterization for the inverses of hyperbolic sigmoids using Euler's incomplete beta functions, and describe composition rules that illustrate how such functions may be synthesized from others. These results are applied to two problems. First we show that with respect to simple sigmoids the continuous Cohen-Grossberg-Hopfield model can be reduced to the (associated) Legendre differential equations. Second, we show that the effect of using simple sigmoids as node transfer functions in a one-hidden layer feedforward network with one summing output may be interpreted as representing the output function as a Fourier series sine transform evaluated at the hidden layer node inputs, thus extending and complementing earlier results in this area. Copyright 1996 Elsevier Science Ltd

Download full-text PDF

Source
http://dx.doi.org/10.1016/0893-6080(95)00107-7DOI Listing

Publication Analysis

Top Keywords

simple sigmoids
16
hyperbolic sigmoids
8
sigmoids
7
functions
5
characterization class
4
class sigmoid
4
sigmoid functions
4
functions applications
4
applications neural
4
neural networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!