This paper focuses on two ART architectures, the Fuzzy ART and the Fuzzy ARTMAP. Fuzzy ART is a pattern clustering machine, while Fuzzy ARTMAP is a pattern classification machine. Our study concentrates on the order according to which categories in Fuzzy ART, or the ART(a) model of Fuzzy ARTMAP are chosen. Our work provides a geometrical, and clearer understanding of why, and in what order, these categories are chosen for various ranges of the choice parameter of the Fuzzy ART module. This understanding serves as a powerful tool in developing properties of learning pertaining to these neural network architectures; to strengthen this argument, it is worth mentioning that the order according to which categories are chosen in ART 1 and ARTMAP provided a valuable tool in proving important properties about these architectures. Copyright 1996 Elsevier Science Ltd.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0893-6080(96)00018-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!