Attenuation of photodynamically induced apoptosis by an RGD containing peptide.

Photochem Photobiol Sci

Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.

Published: April 2002

Research efforts have focused on the improvement of already established photodynamic therapy (PDT) protocols. The use of adjunct therapies is one such route. The integrin class of receptors mediates extracellular matrix signals through a complex maze of intertwining cellular pathways. The Arg-Gly-Asp (RGD) motif is known to bind to several of the 25 known integrin receptor types. Soluble RGD peptides under most circumstances induce apoptosis in a number of cell lines In this study, the effect of an RGD-containing peptide on the photodynamic action of aluminium disulfophthalocyanine (A1PcS(2adj)) was investigated. Adenocarcinoma lung cancer cells (A549) and murine mammary cancer cells (EMT-6) were treated with A1PcS(2adj) in the presence of soluble RGD. At elevated RGD concentrations (10 mM) apoptosis was induced by the peptide alone. It was shown that at lower concentrations, RGD abrogated the apoptotic effect of PDT in both cell lines, as assessed by an MTT cytotoxicity assay, nucleosomal DNA laddering and the formation of apoptotic bodies. RGD protection against apoptosis was more pronounced in the A549 receptor positive cell line which exhibits over 70% cell survival when using 100 microM RGD peptide under LD90 conditions. Different parameters were investigated to clearly establish that the attenuation of cell killing was not solely due to quenching of the excited species by the peptide. Indeed, the phenomenon is not photophysical but biological.

Download full-text PDF

Source
http://dx.doi.org/10.1039/b109979eDOI Listing

Publication Analysis

Top Keywords

rgd
8
rgd peptide
8
soluble rgd
8
cell lines
8
cancer cells
8
peptide
5
cell
5
attenuation photodynamically
4
photodynamically induced
4
apoptosis
4

Similar Publications

A functional bioink with potential in bone tissue engineering must be subjected to critical investigation throughout its intended lifespan. The aim of this study was to develop alginate-gelatin-based (Alg-Gel) multicomponent bioinks systematically and to assess the short- and long-term exposure responses of human bone marrow stromal cells (hBMSCs) printed within these bioinks with and without crosslinking. The first generation of bioinks was established by incorporating a range of cellulose nanofibrils (CNFs), to evaluate their effect on viscosity, printability and cell viability.

View Article and Find Full Text PDF

Magnetic Nanoactuator-Protein Fiber Coated Hydrogel Dressing for Well-Balanced Skin Wound Healing and Tissue Regeneration.

ACS Nano

January 2025

State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, P. R. China.

Despite significant progress in skin wound healing, it is still a challenge to construct multifunctional bioactive dressings based on a highly aligned protein fiber coated hydrogel matrix for antifibrosis skin wound regeneration that is indistinguishable to native skin. In this study, a "dual-wheel-driven" strategy is adopted to modify the surface of methacrylated gelatin (GelMA) hydrogel with highly aligned magnetic nanocomposites-protein fiber assemblies (MPF) consisting of photothermal responsive antibacteria superparamagnetic nanocomposites-fibrinogen (Fg) complexes as the building blocks. Whole-phase healing properties of the modified hydrogel dressing, GelMA-MPF (GMPF), stem from the integration of Fg protein with RGD peptide activity decorated on the surface of the antibacterial magnetic nanoactuator, facilitating facile and reproducible dressing preparation by self-assembly and involving biochemical, morphological, and biophysical cues.

View Article and Find Full Text PDF

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

Facile universal strategy of presenting multifunctional short peptides for customizing desired surfaces.

J Nanobiotechnology

January 2025

Department of Spinal Surgery, The First People's Hospital of Wenling, Affiliated Wenling Hospital, Wenzhou Medical University, Taizhou, Zhejiang, 317500, China.

Article Synopsis
  • Interfacial properties of biomaterials influence critical functions like cell adhesion and tissue repair, making their manipulation essential for clinical applications.
  • The study develops a versatile layer-by-layer (LbL) strategy to effectively attach peptides to substrates using polyphenols, enhancing interfacial functionalities.
  • The resulting peptide-polyphenol coatings demonstrate broad applicability, stability, and the ability to incorporate various functional molecules for improved biomaterial performance.
View Article and Find Full Text PDF

Background/aim: Angiogenesis imaging has been a valuable complement to metabolic imaging with 2-deoxy-2-[F]fluoroglucose (FDG). In our longitudinal study, we investigated the tumour heterogeneity and the relationship between FDG and [Ga]Ga-NODAGA-c(RGDfK) (RGD) accumulation in breast cancer xenografts.

Materials And Methods: Two groups of cell lines, a fast-growing (4T1) and a slow-growing cell line (MDA-MB-HER2+), were inoculated into SCID mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!