The present experiment was conducted to determine the influence of dietary fatty acids C18:2n-6 and C18:3n-3 on the modulation of intrauterine synthesis of prostaglandin E2 (PGE2) and F2alpha (PGF2alpha) during early pregnancy in pigs. Prostaglandin E2 in uterine fluid has been previously reported to be associated with embryo survival and development. Thirty-two Yorkshire-Landrace nulliparous gilts were randomly allocated to four diets containing 5% supplemental fat. The four dietary treatments were: HT, hydrogenated tallow (26.5% C16:0 and 54.8% C18:0); SO, sunflower oil (61.3% C18:2n-6); LO, linseed oil (50.4% C18:3n-3); and SO(CLA), a mixture of sunflower oil and conjugated linoleic acids to provide 20% CLA. Treatments started 2 d after the first pubertal estrus (d -21) and lasted for 36 d (slaughter), which was 15 d after the second estrus (d 0; insemination). Fatty acids and PGE2 were measured in the peripheral blood plasma on d -19, d -7, d 0, and d 14. Fatty acids in endometrial tissues and PGE2 and PGF2alpha in the uterine fluid collected on d 15 were also measured. Concentrations of fatty acids in the plasma reflected the content of fatty acids in the diet as early as d -7. From d -7, PGE2 concentrations in the plasma were higher in gilts fed SO compared with HT (P < 0.05). Plasma PGE2 concentrations were lower (P < 0.01) on d 14 in gilts fed LO compared with HT. Total PGF2alpha contents in the uterine fluid of gilts fed LO were more than 70% lower (P < 0.05) than for the HT group. A similar trend was observed for total PGE2 content and for the ratio PGF2alpha:PGE2, but the effect (LO vs HT) was less marked (P < 0.07 and P < 0.10, respectively). There was no effect of SO or SO(CLA) on total PGE2 contents in the uterine fluid. Dietary enrichment in C18:2n-6 and/or C18:3n-3 for early pregnant gilts can influence fatty acids in plasma and endometrial tissue and can modulate circulatory and intrauterine prostaglandins.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2527/2003.813726x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!