Dopamine plays a critical role in regulation of different renal functions, including glomerular filtration, renin secretion, and sodium excretion. Recent studies have shown that some of the dopamine effects in the proximal tubule may involve hydrogen peroxide (H(2)O(2)) generation by the catecholamine-degrading enzyme monoamine oxidases (MAO). The present study is an investigation of the potential role of H(2)O(2) generated by MAO during dopamine degradation in apoptosis of proximal tubule cells. Dopamine concentrations between 50 and 200 micro M induced apoptosis of rat proximal tubule and monoamine oxidase B-transfected HEK 293 cells (+73% compared with untreated cells) but not in wild-type HEK 293 cell lacking monoamine oxidases. Apoptosis of proximal tubule cells was preceded by an increase in the ratio of Bax/Bcl2 proteins, the release of mitochondrial cytochrome c, caspase-3 activation, and DNA fragmentation. All these events required dopamine internalization into the cells, its metabolism by MAO, and H(2)O(2) production, as they were prevented by the dopamine uptake inhibitor GBR-12909, the irreversible MAO inhibitor pargyline, or the antioxidant N-acetylcysteine. These results show that, in renal proximal tubule cells, dopamine induces oxidative stress, activation of pro-apoptotic cascade, and cell apoptosis exclusively by mechanisms involving H(2)O(2) production by monoamine oxidases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/01.asn.0000058909.00567.5c | DOI Listing |
Hypertens Res
January 2025
Department of Physiology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
Proteinuria, especially albuminuria, serves as an independent risk factor for progression in cardiovascular and renal diseases. Clinical and experimental studies have demonstrated that renal nerves contribute to renal dysfunction in arterial hypertension (AH). This study hypothesizes that renal nerves mediate the mechanisms of protein endocytosis by proximal tubule epithelial cells (PTEC) and glomerular function; with dysregulation of the renal nerves contributing to proteinuria in Wistar rats with renovascular hypertension (2-kidney, 1-clip model, 2K-1C).
View Article and Find Full Text PDFAm J Physiol Renal Physiol
January 2025
Division of Nephrology and Hypertension, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA.
The kidney is highly metabolically active, and injury induces changes in metabolism that can impact repair and fibrosis progression. Changes in expression of metabolism-related genes and proteins provide valuable data, but functional metabolic assays are critical to confirm changes in metabolic activity. Stable isotope metabolomics are the gold standard, but these involve considerable cost and specialized expertise.
View Article and Find Full Text PDFAntimicrob Agents Chemother
January 2025
Department of Pharmacy Practice, College of Pharmacy, Midwestern University, Downers Grove, Illinois, USA.
Vancomycin causes kidney injury by accumulating in the proximal tubule, likely mediated by megalin uptake. Protamine is a putative megalin inhibitor that shares binding sites with heparin and is approved for the treatment of heparin overdose. We employed a well-characterized Sprague-Dawley rat model to assess kidney injury and function in animals that received vancomycin, protamine alone, or vancomycin plus protamine over 5 days.
View Article and Find Full Text PDFClin Nephrol Case Stud
January 2025
Department of Medicine.
Minimal change disease (MCD) accounts for 10 - 15% of idiopathic nephrotic syndromes in adults. Chronic hepatitis C virus (HCV) infection is rarely ascribed as a cause of MCD and was previously associated with interferon-based therapy. MCD in treatment-naïve chronic HCV infection is extremely rare, with only 3 cases reported in the literature.
View Article and Find Full Text PDFJ Infect Dis
January 2025
Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy; Houston, Texas, 77204, United States of America.
Background: Vancomycin ranks amongst the most utilized antimicrobial agents in the treatment of serious β-lactam-resistant Gram-positive infections, but its use has been associated with nephrotoxicity. Reduction of acute kidney injury (AKI) has been reported in pre-clinical models with adjuvant montelukast. The purpose of the study was to ascertain if montelukast was associated with a reduction in the prevalence of vancomycin-associated AKI.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!