Polyethylenimine (PEI) and other polycations are good vehicles for transferring genes into the cells. In earlier reports, poly-L-lysine and protamine have been shown to improve gene delivery with cationic liposomes. In this study, PEI, combined with different cationic liposomes, was studied to determine the optimal conditions for gene delivery. The reporter genes, luciferase and green fluorescent protein, were used to transfect human HeLa, HepG2 and hepatoma 2.2.15 cells with various combinations of PEIs (0.8 and 25 kDa), poly-L-lysine (15-30 kDa), protamine and cationic liposomes. The highest expression level was achieved by using the combination of PEI 25 kDa (0.65 microg/microg of DNA, nitrogen-to-DNA phosphate (N/P) ratio=4.5) with 10 nmol of DOTAP-cholesterol (DOTAP-Chol, 1:1 w/w). This DNA complex formulation dramatically increased the luciferase expression 10- to 100-fold, which was much higher than those of other polycations alone, cationic liposomes alone or the combination. In addition, PEI/DOTAP-Chol combination had little cytotoxicity than DOTAP-Chol or other cationic liposomes alone. The effect of oligonucleotide (ODN) delivery facilitated by PEI and cationic liposomes was also studied in the hepatoma cell lines. We demonstrated an antisense ODN of p53 delivered by PEI/DOTAP-Chol combination effectively inhibited the biosynthesis of p53 protein in HepG2 (68% inhibiton) and 2.2.15 cells (43% inhibition). Thus, the large PEI could synergistically increase the transfection efficiency when combined with the cationic liposomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2736(03)00027-0 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, L'Aquila 67100, Italy.
Solid magnetic liposomes (ML, nanocomposites comprising lipid bilayers that incorporate magnetic nanoparticles) may be used in wastewater remediation: the lipid bilayer creates an environment where organic pollutants preferentially partition instead of water and the manipulation of ML with an external magnet enables an easy recovery from water. This study aimed to assess the system's potential for water remediation, focusing on ML ability to remove common pollutants in industrial wastewater. Specifically, alkylphenol ethoxylates (APEO) were used as the archetype for organic pollutants.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Department of Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
Combinational therapy to treat triple-negative breast cancer (TNBC) by concomitantly influencing different cellular pathways has attracted attention recently. In the present study, co-delivery of dasatinib and miR30a by means of CRGDK-targeted lipopolyplexes was conducted to enhance the inhibition of cell proliferation and migration. For this purpose, we condensed the cationic copolymer poly(1-vinylimidazole--2-aminoethyl methacrylate) with miR-30a to form polyplexes.
View Article and Find Full Text PDFTheranostics
January 2025
Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
Local immunomodulation with nanoparticles (NPs) and focused ultrasound (FUS) is recognized for triggering anti-tumor immunity. However, the impact of these tumor immunomodulations on sex-specific microbiome diversity at distant sites and their correlation with therapeutic effectiveness remains unknown. Here, we conducted local intratumoral therapy using immunogenic cell death-enhancing Calreticulin-Nanoparticles (CRT-NPs) and FUS in male and female mice.
View Article and Find Full Text PDFBiomater Transl
September 2024
School of Medical Technology, Beijing Institute of Technology, Beijing, China.
Skull defects are common in the clinical practice of neurosurgery, and they are easily complicated by encephalitis, which seriously threatens the life and health safety of patients. The treatment of encephalitis is not only to save the patient but also to benefit the society. Based on the advantages of injectable hydrogels such as minimally invasive surgery, self-adaptation to irregularly shaped defects, and easy loading and delivery of nanomedicines, an injectable hydrogel that can be crosslinked in situ at the ambient temperature of the brain for the treatment of encephalitis caused by cranial defects is developed.
View Article and Find Full Text PDFBiophys Chem
December 2024
Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy; Centre for Colloid and Surface Science (CSGI), University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino, Firenze, Italy.
Lipid-based nanocarriers provide versatile platforms for the encapsulation and delivery of many different bioactive compounds to improve the solubility, stability and therapeutic efficacy of bioactive phyto-compounds. In this study, liposomes were used to load leaf extract of Coffea Arabica, which is known to be rich beneficial substances such as alkaloids, flavonoids, etc. The aim of this work is to optimize the valorization of agricultural wastes containing natural antioxidants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!