We have identified and characterized a novel member of the WD-repeat motif gene family, WDR13, which contains 9 exons and 8 introns. The gene has been mapped to the genomic locus Xp11.23 by fluorescent in situ hybridization and in silico mapping. Sequence analysis has revealed a continuous open reading frame (ORF) encoding for 485 amino acids with six WD motifs. The expression of this gene has been detected in all the tissues analyzed with significantly varied expression levels among the tissues studied. Analysis of EST clones from various tissues, showing significant homology to WDR13, has identified two spliced variants. The transcription start point has been mapped. Promoter analysis has identified high activity in the 5' UTR, which interestingly showed a testis-specific activity in the transgenic animals studied. The subcellular localization of the WDR13 protein in the nucleus suggests that it may also have a regulatory role in nuclear function along with protein-protein interaction like other members of the WD family of proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0888-7543(02)00036-8DOI Listing

Publication Analysis

Top Keywords

novel member
8
member wd-repeat
8
family proteins
8
wdr13 identified
8
highly conserved
4
conserved human
4
gene
4
human gene
4
gene encoding
4
encoding novel
4

Similar Publications

A rare haplotype of the GJD3 gene segregating in familial Meniere's disease interferes with connexin assembly.

Genome Med

January 2025

Otology & Neurotology Group CTS495, Instituto de Investigación Biosanitario, Ibs.GRANADA, Universidad de Granada, 18071, Granada, Spain.

Background: Familial Meniere's disease (FMD) is a rare polygenic disorder of the inner ear. Mutations in the connexin gene family, which encodes gap junction proteins, can also cause hearing loss, but their role in FMD is largely unknown.

Methods: We retrieved exome sequencing data from 94 individuals in 70 Meniere's disease (MD) families.

View Article and Find Full Text PDF

Alveolar type 2 (AT2) cells maintain lung health by acting as stem cells and producing pulmonary surfactant. AT2 dysfunction underlies many lung diseases, including interstitial lung disease (ILD), in which some inherited forms result from the mislocalization of surfactant protein C (SFTPC) variants. Lung disease modeling and dissection of the underlying mechanisms remain challenging due to complexities in deriving and maintaining human AT2 cells ex vivo.

View Article and Find Full Text PDF

Blood-brain barrier (BBB) dysfunction is suggested to be a potential mediator between vascular risk factors and cognitive impairment, leading to vascular cognitive impairment. To investigate the relationships between age, sex, and vascular risk factors and BBB water permeability as well as their relationship with cognition. To measure BBB permeability, a novel arterial spin labelling MRI technique (ME-ASL) was applied to derive the time of exchange (Tex), arterial time transit (ATT), and cerebral blood flow (CBF).

View Article and Find Full Text PDF

Background: Alzheimer disease and related dementias (ADRDs) are increasingly common progressive conditions that have a substantial impact on individuals and their primary care partners-together described as a dyad. The stressors experienced by dyad members at around the time of ADRD diagnosis commonly produce clinically elevated emotional distress (ie, depression and anxiety symptoms), which can become chronic and negatively impact health, relationships, and the overall quality of life. Dyads commonly report unmet needs for early support to address these challenges early after diagnosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!