International efforts to mitigate human-caused changes in the Earth's climate are considering a system of incentives (debits and credits) that would encourage specific changes in land use that can help to reduce the atmospheric concentration of carbon dioxide. The two primary land-based activities that would help to minimize atmospheric carbon dioxide are carbon storage in the terrestrial biosphere and the efficient substitution of biomass fuels and bio-based products for fossil fuels and energy-intensive products. These two activities have very different land requirements and different implications for the preservation of biodiversity and the maintenance of other ecosystem services. Carbon sequestration in living forests can be pursued on lands with low productivity, i.e. on lands that are least suitable for agriculture or intensive forestry, and are compatible with the preservation of biodiversity over large areas. In contrast, intensive harvest-and-use systems for biomass fuels and products generally need more productive land to be economically viable. Intensive harvest-and-use systems may compete with agriculture or they may shift intensive land uses onto the less productive lands that currently harbor most of the Earth's biodiversity. Win-win solutions for carbon dioxide control and biodiversity are possible, but careful evaluation and planning are needed to avoid practices that reduce biodiversity with little net decrease in atmospheric carbon dioxide. Planning is more complex on a politically subdivided Earth where issues of local interest, national sovereignty, and equity come into play.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0301-4797(02)00190-1 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
AP-HP, Hôpital Lariboisière, Department of Anaesthesia and Critical Care, Paris, France.
In patients with acute brain injury (ABI), optimizing cerebral perfusion parameters relies on multimodal monitoring. This include data from systemic monitoring-mean arterial pressure (MAP), arterial carbon dioxide tension (PaCO), arterial oxygen saturation (SaO), hemoglobin levels (Hb), and temperature-as well as neurological monitoring-intracranial pressure (ICP), cerebral perfusion pressure (CPP), and transcranial Doppler (TCD) velocities. We hypothesized that these parameters alone were not sufficient to assess the risk of cerebral ischemia.
View Article and Find Full Text PDFCereb Cortex
January 2025
Institute of Neuroscience and Medicine (INM-3), Research Center Juelich, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse, 52425 Jülich, Germany.
More than a decade ago, the introduction of intubation and mechanical ventilation for performing blood oxygen level-dependent functional MRI studies in the rodent brain allowed an improved control over the physiological conditions during scanning sessions. An accurate understanding of respiratory parameters permits to respect the 3Rs in animal research, improves significantly the fMRI outcome, and promises improved translational studies. Developments also prompted a better comprehension on anesthetics and their impact on rodent brain physiology and function, bringing new insights on the buildup of carbon dioxide, interhemispheric connectivity, or arousal, which understanding are paramount for maturing better fMRI protocols in awake rodents.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2000, South Africa.
The grassland ecosystem forms a critical part of the natural ecosystem, covering up to 15-26% of the Earth's land surface. Grassland significantly impacts the carbon cycle and climate regulation by storing carbon dioxide. The organic matter found in grassland biomass, which acts as a carbon source, greatly expands the carbon stock in terrestrial ecosystems.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Information Technology Management, Faculty of Management Technology and Information System, Port Said University, Port Said, 42526, Egypt.
The Internet of Things (IoTs) has revolutionized cities, enabling them to become smarter. IoTs play an important role in monitoring the traffic cameras, roads, smart farming, connected vehicles, air quality, water level, humidity, and carbon dioxide pollution levels in city buildings. One of the major challenges of smart cities is the cyber threat to sensitive data.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
The production of fine particles by green technology like supercritical carbon dioxide requires the assessment of substantial solubility data at high pressures. This study represents the first determination of the solubility of methyldopa in carbon dioxide at pressures and temperatures ranging from 12 to 30 MPa and from 313.2 to 343.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!