A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Preclinical evaluation of inducible nitric oxide synthase lipoplex gene therapy for inhibition of stent-induced vascular neointimal lesion formation. | LitMetric

Several reports have established the concept of nitric oxide synthase (NOS) gene transfer for inhibiting smooth muscle cell (SMC) proliferation after vascular injury. To minimize potential risks associated with viral gene transfer, we developed a liposome-based gene transfer approach employing inducible NOS (iNOS) overexpression for inhibition of stent-induced neointimal lesion formation. Therapeutic lipoplexes were transferred to femoral or coronary arteries of Goettingen minipigs, using the Infiltrator local drug delivery device. Efficiency of local iNOS lipoplex transfer was analyzed by iNOS-specific immunohistochemistry. NO-mediated inhibition of stent-induced neointimal lesion formation was analyzed by intravascular ultrasound (IVUS) and computerized morphometry. Gene transfer efficiency increased dose dependently to a maximum of 44.3 +/- 4.2% iNOS-positive vessel area (dose, 2 microg of iNOS lipoplex). Proliferating cell nuclear antigen (PCNA) expression of medial SMCs (immunohistochemistry) was inhibited significantly by transfer of 2 microg of iNOS lipoplexes (111 +/- 27 cells [iNOS] versus 481 +/- 67 cells [control; PCNA-positive medial cells]). IVUS analysis demonstrated that local transfer of iNOS lipoplexes resulted in a significant reduction of femoral in-stent plaque area (control, 40.85 +/- 6.37 mm(2); iNOS, 24.69 +/- 1.8 mm(2); p = 0.03). Coronary in-stent lesion formation was reduced by about 45% as determined by histologic morphometry (control, 4.0 +/- 0.29; iNOS, 2.2 +/- 0.30; p < 0.01). In conclusion, this study demonstrates that local intramural delivery of iNOS lipoplexes can exert therapeutic effects in inhibiting stent-induced neointimal lesion formation. Together with the nonviral character of this gene therapy approach, these findings may have important impact on the transition of NOS-based gene therapy to clinical practice.

Download full-text PDF

Source
http://dx.doi.org/10.1089/104303403321208970DOI Listing

Publication Analysis

Top Keywords

lesion formation
20
neointimal lesion
16
gene transfer
16
gene therapy
12
inhibition stent-induced
12
stent-induced neointimal
12
inos lipoplexes
12
nitric oxide
8
oxide synthase
8
inos
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!