Bragg gratings are used in several photonic devices to reflect, and thus to isolate, specific wavelengths of light. Gratings can be photoinduced in chalcogenide glasses by illumination of bandgap light in an interference pattern. We used holographic interferometry to create Bragg gratings in amorphous As2Se3 thin films with a period of 0.56 microm by illumination with 633-nm light. The quality of the gratings was tested in real time, and refractive-index modulations as high as 0.037 were measured. These gratings were found to be stable over a period of several months if they were kept in the dark.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.000459DOI Listing

Publication Analysis

Top Keywords

bragg gratings
12
gratings photoinduced
8
as2se3 thin
8
thin films
8
gratings
6
strong bragg
4
photoinduced 633-nm
4
633-nm illumination
4
illumination evaporated
4
evaporated as2se3
4

Similar Publications

The fiber Bragg grating (FBG) is fabricated by the femtosecond laser writing technique with a plane-by-plane (Pl-by-Pl) method in the double-cladding fiber (DCF). The refractive index modified (RIM) region formed by this method is 12 μm × 8 μm in size. Due to the Pl-by-Pl method, high-order Bragg resonances with reflectance greater than 99% can be achieved.

View Article and Find Full Text PDF

Using a single optical microfiber (OM) sensor for multi-parameter sensing can lead to significant demodulation error due to ill-conditioned matrices and nonlinear response characteristics. To address these issues, this paper proposes a novel specially packaged optical microfiber coupler combined with a silver mirror (OMCM). OMCM is combined with a mechanically enhanced sensitivity fiber Bragg grating (FBG) to form a temperature-pressure sensor.

View Article and Find Full Text PDF

Nonlinear emission phenomena observed in transition metal dichalcogenides (TMDCs) have significantly advanced the development of robust nonlinear optical sources within two-dimensional materials. However, the intrinsic emission characteristics of TMDCs are inherently dependent on the specific material, which constrains their tunability for practical applications. In this study, we propose a strategy for the selective enhancement and modification of second-harmonic generation (SHG) emission in a multilayer WS flake through the implementation of a silicon (Si)-based circular Bragg grating (CBG) structure positioned on an Au/SiO substrate.

View Article and Find Full Text PDF

The rigid Fabry-Pérot (F-P) cavity has emerged as the preferred core sensing component for optical pressure, vibration, and acoustic sensing in harsh environments, owing to its high reliability and structural stability. However, due to the inadequate temperature resistance of the optical dielectric film, maintaining a high level of precision in the rigid F-P cavity at elevated temperatures proves to be challenging. Volume Bragg grating (VBG) is a three-dimensional optical element modified by a femtosecond laser within a transparent glass medium to create a periodic refractive index distribution.

View Article and Find Full Text PDF

We report an InP-based MMI combiner integrated array of 4 channel directly modulated 1.3 µm distributed feedback (DFB) lasers. Each laser channel in the array has an active DFB section and a passive distributed Bragg reflector (DBR) section.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!