The economic importance that multiculture is conquering in Santa Catarina State (South of Brazil) explains the crescent search for new coastal sites for farming. Physiological and biochemical studies of the mussel Perna perna are important to the establishment of methodologies for program assessment and environmental monitoring, allowing to infer about site quality and possible influences of xenobiotic agents on coastal areas. In order to evaluate effects caused by lead poisoning (1.21 mumol.L-1), the mussels were maintained at constant temperature (25 degrees C) and fed with Chaetoceros gracilis for 15 days. The control group was acclimatized in sea water 30@1000. At the end of this period time, physiological measurements were carried out along with statistic analysis for filtration rates, lead assimilation and overall respiratory activity. The mechanism of multixenobiotic resistance (MXR) was particularly evaluated in standardized gill fragments using rhodamine B accumulation and its quantification under fluorescence optical microscopy. Regarding the control group, results had shown that the mussels maintenance in a lead-poisoned environment caused higher filtration rates (1.04 and 2.3 and L.h-1.g-1; p < 0.05) and lower assimilation rates (71.96% and 54.1%, respectively). Also it was confirmed a lesser rhodamine B accumulation in the assays under influence of lead, suggesting that this metal induces the MXR mechanism expression in mussel P. perna. These results indicate that such physiological and biochemical alterations in the mussels can modify the energy fluxes of its metabolism, resulting in possible problems on the coastal systems used as cultivating sites.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1590/s1519-69842002000400013 | DOI Listing |
Sci Data
January 2025
Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603 Ernakulam North PO., Kochi, 682018, Kerala, India.
Mussels, particularly Perna viridis, are vital sentinel species for toxicology and biomonitoring in environmental health. This species plays a crucial role in aquaculture and significantly impacts the fisheries sector. Despite the ecological and economic importance of this species, its omics resources are still scarce.
View Article and Find Full Text PDFSci Total Environ
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand. Electronic address:
In New Zealand, the frequency and intensity of marine heatwaves (MHWs) and blooms of the harmful algal species, Alexandrium pacificum, are increasing in areas where there are natural reefs and commercial farms of the mussel, Perna canaliculus. In this study, we assessed the whole organism, tissue and molecular-level response of juvenile (spat) P. canaliculus exposed to these abiotic and biotic stressors, alone and together.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Marine Biotechnology Fish Nutrition and Health Division, Central Marine Fisheries Research Institute, Post Box No 1603, Ernakulam North PO., Kochi 682018, Kerala, India.
The widespread use of zinc oxide nanoparticles (ZnO NPs) in various products raises significant ecological concerns due to their potential toxic effects in aquatic environments. This study employed the Asian green mussel (Perna viridis) as a model to explore the molecular and ecological risks of ZnO NP exposure using transcriptomics. Mussels exposed to ZnO NPs (5, 10, and 15 mg/L) for 28 days showed significant gene expression changes in gill tissues, affecting immune response, calcium homeostasis, and cellular stress.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Cawthron Institute, 98 Halifax Street East, Nelson, 7010, New Zealand.
Global declines in wild mussel populations and production have been linked to the impacts of climate change and pollution. Summer die-offs of mussels (Perna canaliculus), spat retention issues, and a severe decline in mussel spat settlement have been reported in the Marlborough Sounds, an important area for mussel farming in New Zealand. Preliminary evidence suggests that naturally occurring contaminants and changing land use in the surrounding areas, could contribute to the decline of this species.
View Article and Find Full Text PDFSci Total Environ
January 2025
Laboratory of Coastal Biology and Microplastic Analysis, Department of Chemistry, Federal University of Espírito Santo, Brazil.
Several methods can be used to mitigate coastal erosion, and one of the leading solutions is known as beach nourishment (BN), which involves using dredged material for nourishment, adding sand to extend an eroding beach. Although it has many advantages, the environmental impacts of BN remain poorly understood, especially on plastic pollution, which had not been investigated until this study. We aimed to compare the abundance and distribution of microplastics (MPs) found in intertidal sediments and specimens of the bivalve mollusks Crassostrea brasiliana, Mytella strigata, Perna perna, and Tivela mactroides, collected in two beaches of Vitoria, Southeast of Brazil (da Costa et al.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!