The effect of modified-live virus vaccination on von Willebrand factor antigen concentrations and platelet counts in dogs.

Vet Clin Pathol

Veterinary Coagulation Laboratory, University of Melbourne, Princes Highway, Werribee, 3030, Australia.

Published: January 1997

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1939-165x.1997.tb00725.xDOI Listing

Publication Analysis

Top Keywords

modified-live virus
4
virus vaccination
4
vaccination von
4
von willebrand
4
willebrand factor
4
factor antigen
4
antigen concentrations
4
concentrations platelet
4
platelet counts
4
counts dogs
4

Similar Publications

The objective was to determine the effects of injectable trace minerals (ITM, containing Se, Cu, Zn & Mn) administered at the time of primary intranasal (IN) modified-live virus (MLV) vaccination of young dairy calves on the serum neutralizing antibody (SNA) titers to Bovine herpes virus 1 (BHV1), Bovine respiratory syncytial virus (BRSV), and Bovine Parainfluenza type 3 virus (BPIV); cytokine expression in peripheral white blood cells, and BHV1-specific IgA titers in nasal secretions following the vaccination. A total of 60 calves (1 month old) were administered an IN MLV vaccine containing BHV1, BRSV, BPIV (Inforce 3) and randomly assigned to one of two experimental groups: ITM (n = 30; Multimin90, containing Se, Cu, Zn, and Mn) or SAL (n = 30; sterile saline). There was a consistent decay in virus-specific SNA titers in both groups.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess how different routes of vaccine administration and the use of injectable trace minerals (ITM) affect immune responses in dairy calves infected with BVDV2 and BHV1.
  • A total of 60 calves were vaccinated and monitored for immune cell counts, revealing that unvaccinated calves showed significantly lower leukocyte levels compared to vaccinated ones.
  • Results indicated that calves receiving subcutaneous vaccinations had better immune response, particularly in CD4 T cells, and those in the ITM-IN group had the highest CD8 T cell counts, highlighting the importance of both the vaccination method and ITM usage in immune system effectiveness.
View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome (PRRS), caused by the highly variable PRRS virus (PRRSV), presents a significant challenge to the swine industry due to its pathogenic and economic burden. The virus evades host immune responses, particularly interferon (IFN) signaling, through various viral mechanisms. Traditional vaccines have shown variable efficacy in the field, prompting the exploration of novel vaccination strategies.

View Article and Find Full Text PDF

Double Deletion of EP402R and EP153R in the Attenuated Lv17/WB/Rie1 African Swine Fever Virus (ASFV) Enhances Safety, Provides DIVA Compatibility, and Confers Complete Protection Against a Genotype II Virulent Strain.

Vaccines (Basel)

December 2024

European Union Reference Laboratory for African Swine Fever (EURL), Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain.

African swine fever virus (ASFV) is a devastating disease affecting domestic and wild suids and causing significant economic losses in the global pig industry. Attenuated modified live virus (MLV) vaccines are the most promising approaches for vaccine development. This study aimed to evaluate the safety and efficacy of four recombinant ASFV genotype II strains, derived from the non-hemadsorbing (non-HAD) attenuated isolate Lv17/WB/Rie1, through the single or simultaneous deletion of virulence-associated genes.

View Article and Find Full Text PDF

Current Status of Porcine Reproductive and Respiratory Syndrome Vaccines.

Vaccines (Basel)

December 2024

State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.

Porcine reproductive and respiratory syndrome (PRRS), characterized by reproductive failures in breeding pigs and respiratory diseases in growing pigs, is a widespread and challenging disease. The agent, PRRSV, is a single-strand RNA virus that is undergoing continuous mutation and evolution, resulting in the global spread of multiple strains with different genetic characteristics and variable antigens. There are currently no effective measures to eradicate PRRS, and vaccination is crucial for controlling the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!