Pelizaeus Merzbacher disease is an X-linked dysmyelinating disorder of the CNS, resulting from mutations in the proteolipid protein (PLP) gene. An animal model for this disorder, the myelin-deficient (MD) rat, carries a point mutation in the PLP gene and exhibits a phenotype similar to the fatal, connatal disease, including extensive dysmyelination, tremors, ataxia, and death at approximately postnatal day 21 (P21). We postulated that early death might result from disruption of myelinated neural pathways in the caudal brainstem and altered ventilatory response to oxygen deprivation or hypercapnic stimulus. Using barometric plethysmography to measure respiratory function, we found that the MD rat develops lethal hypoxic depression of breathing at P21, but hypercapnic ventilatory response is normal. Histologic examination of the caudal brainstem in the MD rat at this age showed extensive dysmyelination and downregulation of NMDA and to a lesser extent GABA(A) receptors on neurons in the nucleus tractus solitarius, hypoglossal nucleus, and dorsal motor nucleus of the vagus. Unexpectedly, immunoreactive PLP/DM20 was detected in neurons in the caudal brainstem. Not all biosynthetic functions and structural elements were altered in these neurons, because phosphorylated and nonphosphorylated neurofilament and choline acetyltransferase expression were comparable between MD and wild-type rats. These findings suggest that PLP is expressed in neurons in the developing brainstem and that PLP gene mutation can selectively disrupt central processing of afferent neural input from peripheral chemoreceptors, leaving the central chemosensory system for hypercapnia intact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6742015PMC
http://dx.doi.org/10.1523/JNEUROSCI.23-06-02265.2003DOI Listing

Publication Analysis

Top Keywords

ventilatory response
12
plp gene
12
caudal brainstem
12
proteolipid protein
8
gene mutation
8
altered ventilatory
8
myelin-deficient rat
8
extensive dysmyelination
8
gene
4
protein gene
4

Similar Publications

Background: Chronic obstructive pulmonary disease (COPD) is characterized by airway inflammation, airflow limitation, reduced health-related quality of life (HRQL), and exercise intolerance. Pulmonary rehabilitation (PR) is essential for COPD management, but outcomes may be influenced by individual physiological factors. Cardiopulmonary exercise testing (CPET) measures oxygen pulse (O2P), an indicator of stroke volume, yet the impact of baseline O2P on PR effectiveness remains unclear.

View Article and Find Full Text PDF

Background: Little evidence is available about heart rate (HR) response to exercise as well as its relationship with functional capacity in amyloid cardiomyopathy. Then, in a multicentre cohort of patients with amyloid cardiomyopathy, we investigated the prevalence of chronotropic incompetence (CI) and its relationships with cardiopulmonary exercise testing (CPET) variables.

Methods: Data from 172 outpatients with amyloid cardiomyopathy who performed a maximal CPET and who had no significant rhythm disorders were analysed.

View Article and Find Full Text PDF

Background: Double cycling with breath-stacking (DC/BS) during controlled mechanical ventilation is considered potentially injurious, reflecting a high respiratory drive. During partial ventilatory support, its occurrence might be attributable to physiological variability of breathing patterns, reflecting the response of the mode without carrying specific risks.

Methods: This secondary analysis of a crossover study evaluated DC/BS events in hypoxemic patients resuming spontaneous breathing in cross-over under neurally adjusted ventilatory assist (NAVA), proportional assist ventilation (PAV +), and pressure support ventilation (PSV).

View Article and Find Full Text PDF

With over 14 million people living above 3,500 m, the study of acclimatization and adaptation to high altitude in human populations is of increasing importance, where exposure to high altitude (HA) imposes a blood oxygenation and acid-base challenge. A sustained and augmented hypoxic ventilatory response protects oxygenation through ventilatory acclimatization, but elicits hypocapnia and respiratory alkalosis. A subsequent renally mediated compensatory metabolic acidosis corrects pH toward baseline values, with a high degree of interindividual variability.

View Article and Find Full Text PDF

Chronic intermittent hypoxia (CIH), the main feature of obstructive sleep apnea, heightened chemosensory discharges of the carotid body (CB), which contributes to potentiate the ventilatory hypoxic response and elicits hypertension. We aimed to determine: 1) whether the persistence of cardiorespiratory alterations found in long-term CIH depend on the inputs from the CB and, 2) in what extension the activation of glial cells and neuroinflammation in the caudal region of the nucleus of the Solitary Tract (NTS) requires functional CB chemosensory activity. To evaluate these hypotheses, we exposed male mice to CIH for 60 days.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!