Experimental verification of the ability to alter the sensitivity to fluorophore layers in turbid media by varying illumination-collection geometry is presented. Fiber-optic probes and two-layer, fluorophore-doped, turbid phantoms are used to elucidate the roles of spot size, illumination-collection fiber separation, and probe-sample spacing. Variations in single- and multiple-fiber probe design parameters produce significant changes in the relative sensitivity to sample layers in a manner that agrees with prior computational studies.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.28.000120DOI Listing

Publication Analysis

Top Keywords

fluorophore layers
8
layers turbid
8
turbid media
8
probe design
8
selective detection
4
detection fluorophore
4
media role
4
role fiber-optic
4
fiber-optic probe
4
design experimental
4

Similar Publications

Portable dual-function ratio-type triple-emission molecularly imprinted fluorescence sensor for the simultaneous visual detection of hepatitis A and B viruses.

Anal Chim Acta

January 2025

The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:

Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.

View Article and Find Full Text PDF

Purpose: To develop an end-to-end convolutional neural network model for analyzing hematoxylin and eosin(H&E)-stained histological images, enhancing the performance and efficiency of nuclear segmentation and classification within the digital pathology workflow.

Methods: We propose a dual-mechanism feature pyramid fusion technique that integrates nuclear segmentation and classification tasks to construct the HistoNeXt network model. HistoNeXt utilizes an encoder-decoder architecture, where the encoder, based on the advanced ConvNeXt convolutional framework, efficiently and accurately extracts multi-level abstract features from tissue images.

View Article and Find Full Text PDF

The shortwave infrared (SWIR) region is an ideal spectral window for next-generation bioimaging to harness improved penetration and reduced phototoxicity. SWIR spectral activity may also be accessed via supramolecular dye aggregation. Unfortunately, development of dye aggregation remains challenging.

View Article and Find Full Text PDF

Coating of Threads with Fluorescent Curli Fibers for pH Sensing.

ACS Appl Bio Mater

January 2025

Department of Chemical Engineering, McGill University, Montreal, Quebec H3A 0C5, Canada.

Threads coated with bioresponsive materials hold promise for innovative wearable diagnostics. However, most thread coatings reported so far cannot be easily customized for different analytes and frequently incorporate non-biodegradable components. Most optically active thread coatings rely on dyes, which often exhibit irreversible responses.

View Article and Find Full Text PDF

It is widely believed that axons in the central nervous system of adult mammals do not regrow following injury. This failure is thought, at least in part, to underlie the limited recovery of function following injury to the brain or spinal cord. Some studies of fixed tissue have suggested that, counter to dogma, norepinephrine (NE) axons regrow following brain injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!