A number of data support the assumption that antidepressants (ADs) normalize the altered function of the hypothalamic-pituitary-adrenocortical (HPA) system involved in the pathophysiology of depressive disorder via direct effects on glucocorticoid receptors (GRs). In the present study, we examined the tricyclic ADs desipramine (DESI) and imipramine (IMI), the noradrenaline reuptake inhibitor maprotiline (MAPRO), and the noradrenergic and specific serotonergic AD (NaSSA) mirtazapine (MIR) for their effects on GR expression in primary human leukocytes and in monocytic U-937 cells. Semiquantitative RT-PCR indicated that the ADs exert differential effects on GR-mRNA levels in both primary human leukocytes and U-937 cells: whereas MAPRO and IMI did not induce pronounced changes in GR-mRNA levels, DESI and MIR significantly decreased the amounts of GR-mRNA in both cell systems. Further characterization of the effects of MIR revealed a time dependency of the regulation with an initial increase of GR-mRNA levels above control levels after 2.5 h of treatment and a decrease after 4, 24, and 48 h of incubation. A dose-response analysis demonstrated maximal effects of MIR at a concentration of 10(-7) M. Immunohistochemical studies showed that MIR increased the GR protein levels in a time-dependent manner and that this upregulation appeared earlier by additional treatment with dexamethasone (DEX). A translocation of the GR protein from the cytoplasm to the nucleus was induced between 24 and 48 h of treatment with MIR and MIR/DEX, respectively. Taken together, our data further support the assumption that ADs influence the neuroendocrine and immune system via effects on cellular GRs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/sj.npp.1300056 | DOI Listing |
Biol Direct
January 2025
Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biotechnology, College of Biotechnology, Misr University for Science and Technology, P. O. Box 77, Giza, Egypt.
This study was designed to assess the effect of brentuximab vedotin on several breast cancer cell lines in terms of promoting apoptosis and managing cancer progression. Additionally, the study investigated the potential of repurposing this drug for new therapeutic reasons, beyond its original indications. The study evaluates the cytotoxic effects of Brentuximab vedotin across five cell lines: normal human skin fibroblasts (HSF), three breast cancer cell lines (MCF-7, MDA-MB-231, and T-47D), and histiocytic lymphoma (U-937).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico.
The Annona genus contains some species used in Mexican traditional medicine for the treatment cancer, including . The present study aimed to investigate the anticancer activity of caryophyllene oxide (CO) isolated from using in vivo, in vitro, and in silico approaches. The identification of CO was performed using gas chromatography-mass spectroscopy and NMR methods.
View Article and Find Full Text PDFAnticancer Res
December 2024
College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, U.S.A.
Anticancer Res
December 2024
Department of Laboratory Medicine, Institute of Science Tokyo, Tokyo, Japan
Background/aim: Extracellular signal-regulated kinases (ERK)1/2 are important regulatory proteins that control cell proliferation and survival, playing a significant role in cancer progression, metastasis, and chemoresistance. This study investigated the effects of ERK1/2 inhibitors on the in vitro growth of acute leukemia cell lines.
Materials And Methods: Three ERK1/2 inhibitors were used: SCH772984, temuterkib (LY3214996), and ulixertinib (BVD-523).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!