The Conus magus peptide toxin omega-conotoxin MVIIA is considered an irreversible, specific blocker of N-type calcium channels, and is now in clinical trials as an intrathecal analgesic. Here, we have examined the action of MVIIA on mutant and wild type calcium channels transiently expressed in tsA-201 cells. Although we have shown previously that mutations in a putative external EF-hand motif in the domain IIIS5-H5 region alters block by both omega-conotoxin GVIA and MVIIA (Feng, Z. P., Hamid, J., Doering, C., Bosey, G. M., Snutch, T. P., and Zamponi, G. W. (2001) J. Biol. Chem. 276, 15728-15735), the introduction of five point mutations known to affect GVIA blocking (and located downstream of the EF-hand) affected MVIIA block to a smaller degree compared with GVIA. These data suggest that despite some overlap, MVIIA and GVIA block does not share identical channel structural determinants. At higher concentrations (approximately 3 microm), MVIIA reversibly blocked L-, P/Q-, and R-type, but not T-type channels, indicating that the overall architecture of the MVIIA site is conserved in all types of high voltage-activated calcium channels. A kinetic analysis of the MVIIA effects on the N-type channel showed that MVIIA blocked resting, open, and inactivated channels. Although the development of MVIIA block did not appear to be voltage-, nor frequency-dependent, the degree of recovery from block strongly depended on the potential applied during washout. Interestingly, the degree of washout was highly variable and appeared to weakly depend on the holding potential applied during toxin application. We propose a model in which N-type calcium channels can form both reversible and irreversible complexes with MVIIA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M300581200 | DOI Listing |
J Venom Anim Toxins Incl Trop Dis
January 2025
School of Health Santa Casa BH, Belo Horizonte, MG, Brazil.
Background: This study examines the impact of Phα1β, a spider peptide derived from the venom of , on the Kv11.1 potassium channel in HEK293 cells transfected with the human ERG potassium channel. Phα1β inhibits high-voltage calcium channels and acts as an antagonist of the TRPA1 receptor, both of which play crucial roles in pain transduction pathways.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Hubei Key Laboratory of Industry Microbiology, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Glyn O. Phillips Hydrocolloid Research Centre at HBUT, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China; Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, College of Health Science and Engineering, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China. Electronic address:
Calcium-based nanomaterials-mediated Ca overload-induced pyroptosis and its application in tumor therapy have received considerable attention. However, the calcium buffering capacity of tumor cells can maintain mitochondrial calcium homeostasis, so it is important to effectively disrupt this homeostasis to activate pyroptosis. Here, a nano-modulator CUR@CaCO-PArg@HA (CCAH) was developed to regulate calcium overload in multiple channels and activate pyroptosis.
View Article and Find Full Text PDFSci Adv
January 2025
Aix-Marseille Université, INSERM, UNIS, Marseille, France.
Amblyopia, a highly prevalent loss of visual acuity, is classically thought to result from cortical plasticity. The dorsal lateral geniculate nucleus (dLGN) has long been held to act as a passive relay for visual information, but recent findings suggest a largely underestimated functional plasticity in the dLGN. However, the cellular mechanisms supporting this plasticity have not yet been explored.
View Article and Find Full Text PDFJ Taibah Univ Med Sci
February 2025
Department of Prosthodontics/Dental Material, Dr. Ziauddin Ahmad Dental College, Aligarh Muslim University, India.
Objectives: Calcium ions (Ca) play crucial role in tooth development, particularly in maintaining enamel density during amelogenesis. Ameloblasts require specific proteins such as amelogenin, ameloblastin, enamelin, kallikrein, and collagen for enamel growth. Recent research has highlighted the importance of calcium and fluoride ions, as well as the TRPM7, STIM, and SOCE pathways, in regulating various stages of enamel formation.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
Dipartimento di Fisica, Università di Genova, Genova, Italy.
MINFLUX nanoscopy relies on the localization of single fluorophores with expected ~ 2 nm precision in 3D mapping, roughly one order of magnitude better than standard stimulated emission depletion microscopy or stochastic optical reconstruction microscopy. This "brilliant" technique takes advantage of specialized localization principles and algorithms that require only dim fluorescence signals with a minimum flux of photons; hence the name follows. With this level of performance, MINFLUX imaging and tracking should allow for the routine study of biological processes down to the molecular scale, revealing previously unresolved details in cell structures, such as the organization of calcium channels in muscle cells or the clustering of receptors in synapses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!