Novel protein synthesis in the brain has been suggested to contribute to the formation of synapses and neural circuits during development and the modulation of long-term synaptic plasticity through life. However, cellular and subcellular distribution of neuronal translation machinery and regulator molecules has not yet been extensively characterized in rat brain. In this report, the distribution of translation factors in the developing hippocampus, a region which is highly plastic, was analyzed by immunohistochemistry and Western blotting. Western blot analysis revealed that the hippocampus expresses the factors in all three steps of translation, initiation factors, elongation factors and a release factor. Immunochemical studies of hippocampal slices and culture showed that all translation factors were observed not only in cell bodies but also in dendrites of hippocampal neurons. In addition, the levels of the individual translation factors differed between hippocampal subregions. The differential distribution of translation factors was also confirmed by Western blotting. These results suggest that regulated protein synthesis occurs in the hippocampus, with differences existing between different subregions such as CA1, CA3 and dentate gyrus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0169-328x(03)00027-5 | DOI Listing |
Leuk Lymphoma
January 2025
Multiple Myeloma Division, The John Theurer Cancer Center, Hackensack Meridian Health, Hackensack, NJ, USA.
Patients participating in clinical trials are highly selected and may not represent the general population. The pivotal study of teclistamab (MajesTEC-1), a B-cell maturation antigen (BCMA)xCD3 bispecific antibody, demonstrated impressive response rates and progression free survival in relapsed/refractory multiple myeloma (RRMM) with acceptable toxicity. We performed a retrospective study of 58 patients treated as standard of care at four US academic centers to determine how these results translated to the real-world.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Engineering Technological Center of Fungus Active Substances of Fujian Province, College of Biological Sciences and Technology, Minnan Normal University, Zhangzhou, 363000, China.
Translation initiation, which involves numerous protein factors and coordinated control steps, represents the most complicated process during eukaryotic translation. However, the roles of eukaryotic translation initiation factor (eIF) in filamentous fungi are not well clarified. In this study, we investigated the function of eIF2Bα in Aspergillus oryzae, an industrially important filamentous fungus.
View Article and Find Full Text PDFGastric Cancer
January 2025
Department of Medical Oncology, Hospital Clinico Universitario, INCLIVA, Biomedical Research Institute, University of Valencia, Avenida Menendez Pelayo nro 4 accesorio, Valencia, Spain.
Introduction: Gastric cancer (GC) burden is currently evolving with regional differences associated with complex behavioural, environmental, and genetic risk factors. The LEGACy study is a Horizon 2020-funded multi-institutional research project conducted prospectively to provide comprehensive data on the tumour biological characteristics of gastroesophageal cancer from European and LATAM countries.
Material And Methods: Treatment-naïve advanced gastroesophageal adenocarcinoma patients were prospectively recruited in seven European and LATAM countries.
Adv Sci (Weinh)
January 2025
Institute of Microsurgery on Extremities, Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
Chondrocyte senescence is an important pathogenic factor causing osteoarthritis (OA) progression through persistently producing pro-inflammatory factors. Mesenchymal stem cells-derived small extracellular vesicles (MSC-sEVs) have shown anti-inflammatory effects in OA models, while persistent existence of senescent chondrocytes still promotes cartilage destruction. Therefore, improving the targeted elimination ability on senescent chondrocytes is required to facilitate the translation of MSC-sEVs in OA treatment.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Obstetrics and Gynecology, Zhejiang Key Laboratory of Precise Protection and Promotion of Fertility, Zhejiang Provincial Clinical Research Center for Reproductive Health and Disease, Assisted Reproduction Unit, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.
The developmental competence and epigenetic progression of oocytes gradually become dysregulated with increasing maternal age. However, the mechanisms underlying age-related epigenetic regulation in oocytes remain poorly understood. Zygote arrest proteins 1 and 2 (ZAR1/2) are two maternal factors with partially redundant roles in maintaining oocyte quality, mainly known by regulating mRNA stability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!