gp210 is a major constituent of the nuclear pore complex (NPC) with possible structural and regulatory roles. It interacts with components of the NPC via its C-terminal domain (CTD), which follows a transmembrane domain and a massive ( approximately 200 kDa) N-terminal region that resides in the lumen of the perinuclear space. Here, we report the solution structure of the human gp210 CTD as determined by various spectroscopic techniques. In water, the CTD adopts an extended, largely unordered conformation, which contains a significant amount of left-handed polyproline type II (PII) helical structure. The conformation of the CTD is altered by high pH, charged detergents, and the hydrogen bond-promoting reagent trifluoroethanol (TFE), which decrease the PII fraction of the fragment. TFE also induces a conformational change in a region containing an SPXX motif whose serine becomes specifically phosphorylated during mitosis. We propose that PII elements in the CTD may play a role in its interaction with the NPC and may serve as recognition sites for regulatory proteins bearing WW or other, unknown PII-binding motifs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/bi0266176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!