A group II intron inserted into a bacterial heat-shock operon shows autocatalytic activity and unusual thermostability.

Biochemistry

Howard Hughes Medical Institute, Yale University, Room 334A, Bass Building, 266 Whitney Avenue, New Haven, Connecticut 06520, USA.

Published: April 2003

Group II intron RNAs fold into catalytically active structures that catalyze their own self-splicing and subsequent transposition into DNA. Because of their remarkable enzymatic properties, it has been of interest to find new group II introns with novel properties. Here we report the cloning, sequencing, and mechanistic characterization of a new group II intron from the bacterium Azotobacter vinelandii (the AV intron). Although it bears the characteristics of the group IIB1 class, the AV intron is unusually G-C rich, and it has unusual insertion sequences and a minimal dependence on the EBS2-IBS2 tertiary interaction. The AV intron is the first bacterial intron that has been found to reside in a housekeeping gene which, in this case, encodes a heat-shock protein (hsp60). Consistent with a potential role in heat-shock regulation, kinetic analysis reveals that AV intron self-splicing is activated only at elevated temperatures. This suggests a novel pathway for the regulation of heat shock in prokaryotes and provides a first example of a thermally tolerant group II intron RNA.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi027330bDOI Listing

Publication Analysis

Top Keywords

group intron
16
intron
8
group
6
intron inserted
4
inserted bacterial
4
bacterial heat-shock
4
heat-shock operon
4
operon autocatalytic
4
autocatalytic activity
4
activity unusual
4

Similar Publications

Urinary schistosomiasis is caused by the blood fluke , which is predominantly found in Africa. The freshwater snail is its main intermediate host. The species that make up the group are genetically complex, and their taxonomic status remains controversial.

View Article and Find Full Text PDF

Variation in litter size (LS) in sheep is linked to genetic factors, including the Zona pellucida-3 (ZP3) gene, which plays a role in ovine reproductive processes. This study examined the association between ZP3 gene variations and LS in Kari sheep. Two groups of 160 Kari ewes were analysed: one consistently producing singletons and another producing twins, with occasional triplets.

View Article and Find Full Text PDF

Cryo-EM structure determination of protein-free RNAs has remained difficult with most attempts yielding low to moderate resolution and lacking nucleotide-level detail. These difficulties are compounded for small RNAs as cryo-EM is inherently more difficult for lower molecular weight macromolecules. Here we present a strategy for fusing small RNAs to a group II intron that yields high resolution structures of the appended RNA.

View Article and Find Full Text PDF

Intron removal during pre-mRNA splicing is of extraordinary complexity and its disruption causes a vast number of genetic diseases in humans. While key steps of the canonical spliceosome cycle have been revealed by combined structure-function analyses, structural information on an aberrant spliceosome committed to premature disassembly is not available. Here, we report two cryo-electron microscopy structures of post-B spliceosome intermediates from Schizosaccharomyces pombe primed for disassembly.

View Article and Find Full Text PDF

Multigene panel tests (MGPTs) revolutionized the diagnosis of Lynch syndrome (LS), however noncoding pathogenic variants (PVs) can only be detected by complementary methods including whole genome sequencing (WGS). Here we present a DNA-, RNA- and tumor tissue-based WGS prioritization workflow for patients with a suspicion of LS where MGPT detected no LS-related PV. Among the 100 enrolled patients, MGPT detected 28 simple PVs and an additional 3 complex PVs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!