Chaperonin 60 unfolds its secrets of cellular communication.

Cell Stress Chaperones

Cellular Microbiology Research Group, Eastman Dental Institute, University College London, 256 Grays Inn Road, London WC1X 8LD, UK.

Published: October 2002

The cell biology of the chaperonins (Cpns) has been intensively studied over the past 25 years. These ubiquitous and essential molecules assist proteins to fold into their native state and function to protect proteins from denaturation after stress. The structure of the most widely studied Cpn60, Escherichia coli GroEL, has been solved and its mechanism of protein folding action largely established. But in the last decade, evidence has accumulated to suggest that the Cpn60s have functions in addition to intracellular protein folding, particularly the ability to act as intercellular signals with a wide variety of biological effects. Cpn60 has the ability to stimulate cells to produce proinflammatory cytokines and other proteins involved in immunity and inflammation and may, therefore, provide a link between innate and adaptive immunity. Cpn60s are also thought to be pathogenic factors in a wide range of diseases and have recently been reported to be present in the circulation of normal subjects and those with heart disease. An interesting facet of these proteins is the finding that in spite of significant sequence conservation, individual Cpn60 proteins can express very different biological activities. This review discusses the work to date, which has revealed the cell-cell signaling actions of Cpn60 proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514831PMC
http://dx.doi.org/10.1379/1466-1268(2002)007<0317:cuisoc>2.0.co;2DOI Listing

Publication Analysis

Top Keywords

protein folding
8
cpn60 proteins
8
proteins
6
chaperonin unfolds
4
unfolds secrets
4
secrets cellular
4
cellular communication
4
communication cell
4
cell biology
4
biology chaperonins
4

Similar Publications

Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized.

View Article and Find Full Text PDF

Simulating large molecular systems over long timescales requires force fields that are both accurate and efficient. In recent years, E(3) equivariant neural networks have lifted the tension between computational efficiency and accuracy of force fields, but they are still several orders of magnitude more expensive than established molecular mechanics (MM) force fields. Here, we propose Grappa, a machine learning framework to predict MM parameters from the molecular graph, employing a graph attentional neural network and a transformer with symmetry-preserving positional encoding.

View Article and Find Full Text PDF

The production of complex multimeric secretory immunoglobulins (SIgA) in Nicotiana benthamiana leaves is challenging, with significant reductions in complete protein assembly and consequently yield, being the most important difficulties. Expanding the physical dimensions of the ER to mimic professional antibody-secreting cells can help to increase yields and promote protein folding and assembly. Here, we expanded the ER in N.

View Article and Find Full Text PDF

Amyloid fibrils are highly stable misfolded protein assemblies that play an important role in several neurodegenerative and systemic diseases. Although structural information of the amyloid state is now abundant, mechanistic details about the misfolding process remain elusive. Inspired by the Φ-value analysis of protein folding, we combined experiments and molecular simulations to resolve amino-acid contacts and determine the structure of the transition-state ensemble-the rate-limiting step-for fibril elongation of PI3K-SH3 amyloid fibrils.

View Article and Find Full Text PDF

Heat-shock protein 90 (HSP90) is a highly active molecular chaperone that plays a crucial role in cellular function. It facilitates the folding, assembly and stability of various oncogenic proteins, particularly kinases and transcription factors involved in regulating tumor growth and maintenance signaling pathways. Consequently, HSP90 inhibitors are being explored as drugs for cancer therapy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!