The maternally inherited intracellular symbiont Wolbachia is well known for inducing a variety of reproductive and developmental abnormalities in the diverse arthropod hosts it infects. It has been implicated in causing cytoplasmic incompatibility (CI), parthenogenesis, feminization of genetic males and male killing in different hosts. However, the molecular mechanisms by which this fastidious bacterium causes these abnormalities have not yet been determined. In our study, representational difference analysis (RDA) was used to analyze the genomic difference between different Wolbachia strains. A gene encoding glutathione-regulated potassium-efflux system protein KefKL from Wolbachia in Drosophila simulans Riverside (w Ri) was isolated. The homologous genes from Wolbachia in Drosophila melanogaster yw67c23 (wMel) and Wolbachia in Drosophila melanogaster CantonS (wMelCS) were also cloned and sequenced. Sequence analysis showed that these deduced amino acid sequences contained two important motifs: Na+/H+ antiportor and NAD binding domain, which shared conserved sequences among different strains. Considering the crucial function of KefKL for ionic homeostasis, this gene might play an important role in Wolbachia physiology. Further study indicated that there was no homologue detected from Wolbachia in Drosophila simulans DSW/Mau (wMa) and Wolbachia in Drosophila simulans Noumea (wNo). Whether Wolbachia contained KefKL (or the homologous gene) was consistent with the phylogenetic studies using wsp sequences, which showed that wMa and wNo were grouped into one branch, while w Ri, wMel and wMelCS were more closely related.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/1042517021000003897 | DOI Listing |
are endosymbiotic bacteria inducing various reproductive manipulations of which cytoplasmic incompatibility (CI) is the most common. CI leads to reduced embryo viability in crosses between males carrying and uninfected females or those carrying an incompatible symbiont strain. In the mosquito , the Pip causes highly complex crossing patterns.
View Article and Find Full Text PDFBMC Microbiol
January 2025
School of the Environment, The University of Queensland, Brisbane, QLD, Australia.
Viruses transmitted by arthropods pose a huge risk to human health. Wolbachia is an endosymbiotic bacterium that infects various arthropods and can block the viral replication cycle of several medically important viruses. As such, it has been successfully implemented in vector control strategies against mosquito-borne diseases, including Dengue virus.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
The protein encoded by the gene () plays an essential role in early gametogenesis by complexing with the gene product of () to promote germline stem cell daughter differentiation in males and females. Here, we compared the AlphaFold2 and AlphaFold Multimer predicted structures of Bam protein and the Bam:Bgcn protein complex between where is necessary in gametogenesis to that in , where it is not. Despite significant sequence divergence, we find very little evidence of significant structural differences in high confidence regions of the structures across the four species.
View Article and Find Full Text PDFGenetics
December 2024
Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.
bioRxiv
December 2024
Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA.
is the most widespread animal-associated intracellular microbe, living within the cells of over half of insect species. Since they can suppress pathogen replication and spread rapidly through insect populations, is at the vanguard of public health initiatives to control mosquito-borne diseases. 's abilities to block pathogens and spread quickly are closely linked to their abundance in host tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!