Activities of NAD(+)-dependent sorbitol dehydrogenase (SDH), sorbitol oxidase (SOX), sucrose synthase (SS), acid invertase (AI), and neutral invertase (NI) in 'Encore' peach (Prunus persica L.) fruits and developing shoot tips were assayed during the growing season to determine whether carbohydrate metabolizing enzymes could serve as indicators of sink strength. In fruit flesh, SS activity was detected during Stage I of growth, when cells were actively dividing, and SDH activity was detected during Stage III, when cells were actively enlarging. Acid invertase activity was detected during Stage I and showed a closer correlation with relative increase in fruit weight during the growing season than SS activity. During seed filling and pit hardening (Stage II), when relative fruit growth rate was slowest, activities of carbohydrate metabolizing enzymes in fruit flesh were not detectable. No SOX activity was detected during Stages I and II. The highest sucrose content occurred near the end of fruit development when the activities of sucrose metabolizing enzymes were low. In developing shoot tips, the sorbitol:sucrose ratio was 2:1 (w/w) and SDH activity was low at the beginning and end of the season when vegetative growth was slowest. The sorbitol:sucrose ratio changed to 1:1 (w/w) along with an increase in SDH activity in shoot tips during the mid-growing season. In 'Nemaguard' peach, SDH exhibited higher activity in root tips than in other organs. Among the sorbitol- and sucrose-metabolizing enzyme activities, only SDH activity was positively correlated with shoot growth in 'Nemaguard' plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/19.2.103 | DOI Listing |
Clinics (Sao Paulo)
January 2025
Department of Otolaryngology and Head and Neck Surgery, The First Affiliated Hospital of Bengbu Medical College, Anhui Province, China. Electronic address:
Objective: TRIB3 has been confirmed to participate in and regulate biological metabolic activities in head and neck tumors such as nasopharyngeal carcinoma and oropharyngeal carcinoma, so the purpose of this study was to explore whether there is a correlation between TRIB3 and Laryngeal Squamous Cell Carcinoma (LSCC) and to preliminarily explore the biological characteristics of TRIB3 in LSCC.
Methods: TRIB3 expression in the LSCC was analyzed based on The Cancer Genome Atlas (TCGA) database. CCK-8 assay, Colony Formation Assay, wound healing assay, and Transwell assay were performed to investigate the roles of TRIB3 in the proliferation, invasion and metastasis of LSCC.
Enzyme Microb Technol
January 2025
Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Universitätsplatz 1, Senftenberg 01968, Germany. Electronic address:
There is an enormous potential for cell-free protein synthesis (CFPS) systems based on filamentous fungi in view of their simple, fast and mostly inexpensive cultivation with high biomass space-time yields and in view of their catalytic capacity. In 12 of the 22 different filamentous fungi examined, in vitro translation of at least one of the two reporter proteins GFP and firefly luciferase was detected. The lysates showing translation of a reporter protein usually were able to synthesize a functional cell-free expressed unspecific peroxygenase (UPO) from the basidiomycete Cyclocybe (Agrocybe) aegerita.
View Article and Find Full Text PDFDeep venous thrombosis (DVT) has insidious clinical symptoms, and only a few patients suffer from lower limb swelling, tenderness and dorsal flexion pain. We aimed to explore the ultrasonographic features and risk factors of postoperative lower limb DVT in patients with lower limb fractures. Ninety patients with lower limb fractures admitted from January 1st, 2021 to June 30th, 2023 were selected.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
State Key Laboratory of Coordination Chemistry, Key Laboratory of Mesoscopic Chemistry (Ministry of Education), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Facile pesticide nanocapsules were successfully prepared by directly encapsulating the antisolvent precipitation of pesticides through instantaneous "on site" coordination assembly of tannic acid and Fe, avoiding tedious preparation, time consumption, and large amounts of organic solvents. The pesticide nanocapsules showed excellent resistance to ultraviolet photolysis and rainwater washing owing to the nanocapsule walls. The smart pesticide nanocapsules exhibited the controlled release of pesticides under multidimensional stimuli, such as acidic/alkaline pH, glutathione, HO, phytic acid, laccase, tannase, and sunlight, which were related to the physiological and natural environments of crops, pests, and pathogens.
View Article and Find Full Text PDFBlood
January 2025
State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College; Center for Stem Cell Medicine,, Tianjin, China.
Adenosine-to-inosine (A-to-I) RNA editing is a prevalent RNA modification essential for cell survival. The process is catalyzed by the Adenosine Deaminase Acting on RNA (ADAR) enzyme family that converts adenosines in double-stranded RNAs (dsRNAs) into inosines, which are read as guanosines during translation. Deep sequencing has helped to reveal that A-to-I editing occurs across various types of RNAs to affect their functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!