Sap flow was measured on five branches of two poplar (Populus trichocarpa Torr. & A. Gray x P. tacamahaca L.) trees from June to September 1994 in the south of England with stem-surface, heat balance gauges, and was scaled up to estimate transpiration from single trees on the basis of leaf area. On six days, stomatal conductance and plant water potential were measured simultaneously with a porometer and pressure chamber, respectively. The effects of solar radiation (S), vapor pressure deficit (D) and stomatal conductance on transpiration were evaluated. Sap flow per unit leaf area (F(a)) was closely related to the time course of demand attributable to S and D throughout the season, and only slightly affected by the water content of the top 120 cm of soil. Although F(a) increased linearly at low values of D, it showed a plateau with increases in D above 1.2 kPa. The canopy coupling coefficient (1 - Omega) ranged from 0.48 to 0.78 with a mean of 0.65 +/- 0.01, indicating that transpiration was controlled more by stomatal conductance than by incident radiation. The seasonal pattern of tree water loss followed potential evaporation with a peak in late June or early July. On bright days, daily transpiration over the projected crown area was 3.6 mm early in the season, 3.8 mm in mid-season, and 2.7 mm late in the season. The water balance of the system indicated that poplar trees took 15-60% of water transpired from groundwater, with the proportion increasing as the soil in the unsaturated zone dried out. Access to the water table resulted in high predawn water potentials throughout the season. Estimated hydraulic resistance to water flow in the soil-tree system was in the range of 1.5 to 1.93 x 10(6) MPa s m(-3).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/19.9.563 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!