Transpiration, leaf characteristics and forest structure in Metrosideros polymorpha Gaud. stands growing in East Maui, Hawaii were investigated to assess physiological limitations associated with flooding as a mechanism of reduced canopy leaf area in waterlogged sites. Whole-tree sap flow, stomatal conductance, microclimate, soil oxidation-reduction potential, stand basal area and leaf area index (LAI) were measured on moderately sloped, drained sites with closed canopies (90%) and on level, waterlogged sites with open canopies (50-60%). The LAI was measured with a new technique based on enlarged photographs of individual tree crowns and allometric relationships. Sap flow was scaled to the stand level by multiplying basal area-normalized sap flow by stand basal area. Level sites had lower soil redox potentials, lower mean stand basal area, lower LAI, and a higher degree of soil avoidance by roots than sloped sites. Foliar nutrients and leaf mass per area (LMA) in M. polymorpha were similar between level and sloped sites. Stomatal conductance was similar for M. polymorpha saplings on both sites, but decreased with increasing tree height (r(2) = 0.72; P < 0.001). Stand transpiration estimates ranged from 79 to 89% of potential evapotranspiration (PET) for sloped sites and from 28 to 51% of PET for level sites. Stand transpiration estimates were strongly correlated with LAI (r(2) = 0.96; P < 0.001). Whole-tree transpiration was lower at level sites with waterlogged soils, but was similar or higher for trees on level sites when normalized by leaf area. Trees on level sites had a smaller leaf area per stem diameter than trees on sloped sites, suggesting that soil oxygen deficiency may reduce leaf area. However, transpiration per unit leaf area did not vary substantially, so leaf-level physiological behavior was conserved, regardless of differences in tree leaf area.

Download full-text PDF

Source
http://dx.doi.org/10.1093/treephys/20.10.673DOI Listing

Publication Analysis

Top Keywords

leaf area
28
level sites
20
sloped sites
16
sites
13
sap flow
12
stand basal
12
basal area
12
area
11
leaf
9
forest structure
8

Similar Publications

Climate Change Drives Changes in the Size and Composition of Fungal Communities Along the Soil-Seedling Continuum of Schima superba.

Mol Ecol

January 2025

ECNU-Alberta Joint Lab for Biodiversity Study, Tiantong Forest Ecosystem National Observation and Research Station, School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China.

Plant microbiomes have a major influence on forest structure and functions, as well as tree fitness and evolution. However, a comprehensive understanding of variations in fungi along the soil-plant continuum, particularly within tree seedlings, under global warming is lacking. Here, we investigated the dynamics of fungal communities across different compartments (including bulk soil and rhizosphere soil) and plant organs (including the endosphere of roots, stems and leaves) of Schima superba seedlings exposed to experimental warming and drought using AccuITS absolute quantitative sequencing.

View Article and Find Full Text PDF

Unlabelled: Increasing planting density is one of the most important strategies for generating higher maize yields. Moderate leaf rolling decreases mutual shading of leaves and increases the photosynthesis of the population and hence increases the tolerance for high-density planting. Few genes that control leaf rolling in maize have been identified, however, and their applicability for breeding programs remains unclear.

View Article and Find Full Text PDF

Wheat is an important cereal crop globally and in the United States, and is the largest crop grown by acreage in Colorado. In June 2023, we observed wheat fields displaying severe yellowing and virus-like disease symptoms in plants across seven eastern Colorado counties (Yuma, Prowers, Kit Carson, Washington, Sedgewick, Morgan, and Weld). Symptomatic plants were prominent in fields and appeared bright yellow, with ringspots, mosaic patterning, and streaking on leaves.

View Article and Find Full Text PDF

Morphological variation of Ficus johannis subsp. afghanistanica (Warb.) Browicz in Sistan-va-Baluchestan province, Iran.

BMC Plant Biol

January 2025

Republic of Türkiye, Ministry of Agriculture and Forestry, General Directorate of Agricultural Research and Policies, Hatay Olive Research Institute Directorate, Hassa Station, Hassa, 31700, Hatay, Türkiye.

Background: Ficus johannis subsp. afghanistanica (Warb.) Browicz is an important plant species belonging to the Moraceae family and is part of the Ficus genus.

View Article and Find Full Text PDF

Aboveground biomass estimation in a grassland ecosystem using Sentinel-2 satellite imagery and machine learning algorithms.

Environ Monit Assess

January 2025

School of Geography, Archaeology and Environmental Studies, University of the Witwatersrand, Johannesburg, 2000, South Africa.

The grassland ecosystem forms a critical part of the natural ecosystem, covering up to 15-26% of the Earth's land surface. Grassland significantly impacts the carbon cycle and climate regulation by storing carbon dioxide. The organic matter found in grassland biomass, which acts as a carbon source, greatly expands the carbon stock in terrestrial ecosystems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!