Temperature effect on solubilization of n-alkylbenzenes into sodium cholate micelles.

J Colloid Interface Sci

Graduate School of Sciences, Kyushu University-Ropponmatsu, Chuo-ku, Fukuoka 810-8560, Japan.

Published: March 2003

The solubilization of n-alkylbenzenes (benzene, toluene, ethylbenzene, n-propylbenzene, n-butylbenzene, n-pentylbenzene, n-hexylbenzene) into an aqueous micellar solution of sodium cholate was carried out. Solubilizate concentrations at equilibrium were determined spectrophotometrically at 293.2, 298.2, 303.2, 308.2, and 313.2 K. The first stepwise association constants (K(1)) between solubilizate monomers and vacant micelles were evaluated from the equilibrium concentrations and found to increase with increasing hydrophobicity of the solubilizate molecules. From the Gibbs energy change for solubilization at different micelle aggregation numbers and from the molecular structure of the solubilizates, the function of sodium cholate micelles as solubilizer was discussed. Enthalpy and entropy changes of solubilization were calculated from the temperature dependence of the K(1) values, and the solubilization was found to be enthalpy-driven for the solubilizates with shorter alkyl chains. The results obtained were also compared with those for conventional aliphatic micelles.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0021-9797(02)00192-3DOI Listing

Publication Analysis

Top Keywords

sodium cholate
12
solubilization n-alkylbenzenes
8
cholate micelles
8
temperature solubilization
4
n-alkylbenzenes sodium
4
micelles
4
solubilization
4
micelles solubilization
4
n-alkylbenzenes benzene
4
benzene toluene
4

Similar Publications

Recent studies have emphasized the modification of Insoluble Dietary Fiber (IDF) to enhance its physicochemical properties and functional performance. This study systematically examined the effects of ultrasonic treatment, microwave irradiation, high-temperature and high-pressure processing, and screw extrusion on the physicochemical characteristics, in vitro antioxidant activity, and adsorption capacities of High-Purity Insoluble Dietary Fiber (HPIDF) derived from black bean residues. Although these physical modifications did not alter the functional group composition or crystalline structure of HPIDF, they significantly enhanced its porosity, water-holding capacity (WHC), oil-holding capacity (OHC), and adsorption capacities for glucose, cholesterol, bile salts, and metal ions.

View Article and Find Full Text PDF

In this study, water-soluble fraction (WSF), chelator-soluble fraction (CSF), and sodium carbonate-soluble fraction (NSF) were sequentially fractionated from pear pulp, of which physicochemical properties and hypolipidemic activities in vitro were evaluated. They showed distinct monosaccharide composition, surface morphology, nuclear magnetic resonance (NMR), and Fourier transform infrared (FT-IR) spectrums. WSF and NSF were identified as high methyl-esterified pectic polysaccharides with degrees of methyl esterification (DM) of 85.

View Article and Find Full Text PDF
Article Synopsis
  • Bile salts act as biosurfactants in the gastrointestinal tract, helping to emulsify and absorb fat-soluble nutrients and drugs.
  • The study utilized giant unilamellar vesicles (GUVs) to investigate the permeation behavior of bile salts and their mixed micelles, using sodium cholate (NaC) and various lipophilic substances.
  • Findings showed that below the critical micelle concentration (CMC), NaC causes endocytic changes in GUVs, while above the CMC, mixed micelles interact with the membrane differently, forming aggregates that migrate into the GUV, with variations observed depending on the type of lipophilic component used.
View Article and Find Full Text PDF

Sodium cholate-coated Olea europaea polyphenol nanoliposomes: Preparation, stability, release, and bioactivity.

Food Chem

March 2025

Institute of Chemical Industry of Forest Products, CAF, National Engineering Laboratory for Biomass Chemical Utilization, Key and Open Laboratory on Forest Chemical Engineering, SFA, Key Laboratory of Biomass Energy and Material, Nanjing 210042, Jiangsu Province, China. Electronic address:

Ultra-flexible nanoliposomes (UNL) coated with sodium cholate were fabricated using the thin film hydration technique to encapsulate oleocanthal (OLEO), oleacein (OLEA), oleuropein (OLEU), and hydroxytyrosol (HT) for improving their stability and bioactivity. Their physicochemical properties were further validated through DLS, FTIR, XRD, TGA, and DSC analyses. Negative-staining TEM imaging revealed well-dispersed UNL with laminar vesicles inside.

View Article and Find Full Text PDF

The present work focuses on the photophysical behavior of meso-N-butylcarbazole-substituted BODIPY (CBZ-BDP) in different organized media towards exploring the possible use of the dye as a molecular sensor and imaging agent. The molecule shows an appreciable change in absorption and emission spectra at 75% water-acetonitrile mixture compared to pure acetonitrile. In water-acetonitrile mixture, it displays aggregate-induced emission (AIE) bands.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!