A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures. | LitMetric

Identification of the requisite brain sites in the neuronal network subserving generalized clonic audiogenic seizures.

Brain Res

Department of Pharmacology, Southern Illinois University, School of Medicine, P.O. Box 19629, Springfield 62794-9629, USA.

Published: March 2003

Comparative studies of neuronal networks that subserve convulsions in closely-related epilepsy models are revealing instructive data about the pathophysiological mechanisms that govern these networks. Studies of audiogenic seizures (AGS) in genetically epilepsy-prone rats (GEPRs) and related forms of AGS demonstrate important network similarities and differences. Two substrains of GEPRs exist, GEPR-9s, exhibiting tonic AGS, and GEPR-3s, exhibiting clonic AGS. The neuronal network for tonic AGS resides exclusively in brainstem nuclei, but forebrain sites, including the amygdala (AMG), are recruited after repetitive AGS induction. The neuronal network for clonic AGS remains to be investigated. The present study examined the neuronal network for clonic AGS in GEPR-3s by microinjecting a competitive NMDA receptor antagonist, D,L-2-amino-7-phosphonoheptanoic acid (AP7), into the central nucleus of inferior colliculus (ICc), deep layers of superior colliculus (DLSC), periaqueductal grey (PAG), or caudal pontine reticular formation (cPRF), which are implicated in tonic AGS networks. Microinjections into AMG and perirhinal cortex (PRh), which are not implicated in AGS, were also done. AGS in GEPR-3s were blocked reversibly after microinjections into ICc, DLSC, PAG or cPRF. However, AGS were also blocked by AP7 in AMG but not PRh. The sites in which AP7 blocks AGS are implicated as requisite components of the clonic AGS network, and these data support a critical role for NMDA receptors in clonic AGS modulation. The brainstem nuclei of the clonic AGS network are identical to those subserving tonic AGS. However, the requisite involvement of AMG in the clonic AGS network, which is not seen in tonic AGS, is surprising and suggests important mechanistic differences between clonic and tonic forms of AGS.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0006-8993(02)04232-4DOI Listing

Publication Analysis

Top Keywords

clonic ags
28
ags
20
tonic ags
20
neuronal network
16
ags gepr-3s
12
ags network
12
clonic
9
network
8
audiogenic seizures
8
forms ags
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!