The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(03)00198-4DOI Listing

Publication Analysis

Top Keywords

tata tatb
16
escherichia coli
8
conserved residues
8
tatb proteins
8
tata
5
tatb
5
coli twin-arginine
4
twin-arginine translocase
4
translocase conserved
4
residues tata
4

Similar Publications

Unlabelled: The chloroplast Twin Arginine Transport (cpTAT) protein translocation pathway is one of the thylakoid membrane's two protein transport pathways for getting proteins into the lumen. The cpTAT system distinguishes itself by transporting fully folded proteins across the thylakoid, using the sole energy source of the proton motive force (PMF). The cpTAT pathway is evolutionarily conserved with the TAT pathway found in many bacteria and archaea.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) system transports folded proteins across energized biological membranes in bacteria, plastids, and plant mitochondria. In Escherichia coli, the three membrane proteins TatA, TatB and TatC associate to enable Tat transport. While TatB and TatC together form complexes that bind Tat-dependently transported proteins, the TatA component is responsible for the permeabilization of the membrane during transport.

View Article and Find Full Text PDF

The twin arginine transport (Tat) pathway exports folded proteins across the cytoplasmic membranes of prokaryotes and the thylakoid membranes of chloroplasts. In and other Gram-negative bacteria, the Tat machinery comprises TatA, TatB and TatC components. A Tat receptor complex, formed from all three proteins, binds Tat substrates, which triggers receptor organization and recruitment of further TatA molecules to form the active Tat translocon.

View Article and Find Full Text PDF

The twin-arginine translocation (Tat) pathway utilizes the proton-motive force to transport folded proteins across cytoplasmic membranes in bacteria and archaea, as well as across the thylakoid membrane in plants and the inner membrane in mitochondria. In most species, the minimal components required for Tat activity consist of three subunits, TatA, TatB, and TatC. Previous studies have shown that a polar amino acid is present at the N terminus of the TatA transmembrane helix (TMH) across many different species.

View Article and Find Full Text PDF

The temperature-dependent expression of type II secretion system controls extracellular product secretion and virulence in mesophilic SRW-OG1.

Front Cell Infect Microbiol

August 2022

Fisheries College, Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Engineering Research Center of the Modern Technology for Eel Industry, Jimei University, Xiamen, China.

is a typical cold water bacterial pathogen that causes furunculosis in many freshwater and marine fish species worldwide. In our previous study, the pathogenic (SRW-OG1) was isolated from a warm water fish, was genomics and transcriptomics analyzed. Type II secretion system was found in the genome of SRW-OG1, while the expressions of , and were significantly affected by temperature stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!