Objective: To investigate whether hypertrophy in the dog with chronic atrioventricular block (CAVB) alters [Na+]i and Na/K-pump function of ventricular myocytes.

Methods: We measured the [Na+]i dependence of the Na/K pump current, I(p). This relation was used as a calibration curve for [Na+]i based on I(p). We measured I(p) at the time of access and extrapolated [Na+] at the pump sites, i.e. subsarcolemmal [Na+], [Na+](subs), from the calibration curve.

Results: The extrapolated [Na+](subs) was significantly higher in CAVB (7.9 vs. 3.2 mM in control). The [Na+]i dependence of I(p) in CAVB myocytes was shifted to the right (range of [Na+](i): 0-20 mM). In resting cells, the I(p), i.e. steady state Na+ efflux, which matches Na+ influx, was higher in CAVB (0.25+/-0.02 vs. 0.47+/-0.06 pA/pF, P<0.05). Maximal I(p) density was not different, and DHO sensitivity was not altered.

Conclusions: Hypertrophy in CAVB cells is associated with increased [Na+](subs). This results from an increase in Na+ influx, and a decreased sensitivity of I(p) for Na+ in the range of [Na+]i studied. There is no evidence for a decrease in total pump capacity or for a functional Na/K-ATPase isoform shift. The rise in Na+ contributes to the contractile adaptation and preservation of sarcoplasmic reticulum Ca2+ content at the low heart rates of the dog with CAVB.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0008-6363(02)00734-4DOI Listing

Publication Analysis

Top Keywords

na/k pump
8
[na+]i dependence
8
higher cavb
8
[na+]i
5
increased na+
4
na+ concentration
4
concentration altered
4
altered na/k
4
pump activity
4
activity hypertrophied
4

Similar Publications

The persistent Na current (I) is thought to play important roles in many brain regions including the generation of inspiration in the ventral respiratory column (VRC) of mammals. The characterization of the slow inactivation of I requires long-lasting voltage steps (>1 s), which will increase intracellular Na and activate the Na/K-ATPase pump current (I). Thus, I may contribute to the previously measured slow inactivation of I and the generation of the inspiratory bursting rhythm.

View Article and Find Full Text PDF

Na-K-ATPase/GLT-1 interaction participates in EGCG protection against cerebral ischemia-reperfusion injury in rats.

Phytomedicine

January 2025

Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang 050017, China. Electronic address:

Background: In China, stroke is the primary cause of adult death and disability. Because of the increased rate of blood vessel reperfusion, it is important to prevent cerebral ischemia-reperfusion injury, in which glutamate (Glu) excitotoxicity plays a critical role. The most important Glu transporter, GLT-1, is essential for the regulation of Glu, which is dependent on Na-K-ATPase (NKA)-induced ion concentration gradient differences.

View Article and Find Full Text PDF

Cellular metabolism is inextricably linked to transmembrane levels of proton (H), sodium (Na), and potassium (K) ions. Although reduced sodium-potassium pump (Na-K ATPase) activity in tumors directly disturbs transmembrane Na and K levels, this dysfunction is a result of upregulated aerobic glycolysis generating excessive cytosolic H (and lactate) which are extruded to acidify the interstitial space. These oncogene-directed metabolic changes, affecting intracellular Na and H, can be further exacerbated by upregulation of ion exchangers/transporters.

View Article and Find Full Text PDF

Exploring variances in meat quality between Qingyuan partridge chicken and Cobb broiler: Insights from combined multi-omics analysis.

Poult Sci

December 2024

State Key Laboratory of Livestock and Poultry Breeding, Guangdong Laboratory for Lingnan Modern Agriculture, College of Animal Science, South China Agricultural University, Guangzhou, PR China; Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, Key Laboratory of Chicken Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Guangzhou, PR China. Electronic address:

Previously, animal breeding prioritized enhancing key economic traits to improve production efficiency, leading to a gradual difference in meat quality. However, the genetic factors influencing meat quality remain unclear. To identify key genetic pathways contributing to meat quality, native Chinese yellow-feathered chicken (Qingyuan Partridge Chicken, QPC; female, n=10), and commercial chicken broiler (Cobb broiler, CB; female, n=10) were used for meat quality assessment through metabolomics, proteomics, and phosphoproteomics sequencing.

View Article and Find Full Text PDF

Organization of the stalk system on electrocytes in mormyrid weakly electric fish Campylomormyrus compressirostris.

Cell Tissue Res

December 2024

Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, 14476, Potsdam, Germany.

The adult electric organ in weakly electric mormyrid fish consists of action-potential-generating electrocytes, structurally and functionally modified skeletal muscle cells. The electrocytes have a disc-shaped portion and, on one of its sides, numerous thin processes, termed stalklets. These unite to stalks leading to a single main stalk that carries the innervation site.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!