Okinawa Habu (Trimeresurus flavoviridis) venom is well known for its toxic efficacy, from which one kind of specific protein, Okinawa Habu apoxin protein-1 (OHAP-1) has been extracted. The purpose of this study was to investigate whether OHAP-1 could induce apoptosis in some glioma cells, and if so, to elucidate the possible mechanism involved. Three malignant glioma cell lines were tested. The malignant glioma cell lines were rat C6 and human RBR 17T, U251. OHAP-1 inhibited growth of all cell lines. Whether or not the apoptosis had been induced was determined by using DNA gel electrophoresis, DNA flow cytometry and TUNEL assay. After OHAP-1 treatment, DNA fragmentation, an increase in the percentage of subdiploid DNA content, and TUNEL positive cells were found in the C6, RBR17T, and U251 cells. Furthermore, OHAP-1 showed L-amino acid oxidase (LAAO) activity. In order to study the mechanism of apoptosis induced by OHAP-1, the changes of intracellular reactive oxygen species (ROS) were measured using flow cytometry, and the expression of p53 protein was examined using immunohistochemistry. OHAP-1 was found to generate ROS and increase the expression of p53 protein in glioma cells. The inhibiting effect of OHAP-1 on three tested cells was reversed when an antioxidant of either catalase or reduced glutathione (GSH) was added; its apoptotic effect correspondingly became weaker. In this study, the apoptotic effect of OHAP-1 on some malignant glioma cells was confirmed, and it could be that this effect might be mediated through promoting the generation of intracellular ROS and p53 protein expression in glioma cells. It was suggested that OHAP-1 is promising as a potential candidate for clinical tumor therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0887-2333(03)00010-9DOI Listing

Publication Analysis

Top Keywords

glioma cells
20
okinawa habu
12
malignant glioma
12
cell lines
12
p53 protein
12
ohap-1
10
cells
8
specific protein
8
habu trimeresurus
8
trimeresurus flavoviridis
8

Similar Publications

Background: Selinexor is a selective inhibitor of exportin-1 (XPO1), a key mediator of the nucleocytoplasmic transport for molecules critical to tumor cell survival. Selinexor's lethality is generally associated with the induction of apoptosis, and in some cases, with autophagy-induced apoptosis. We performed this study to determine Selinexor's action in glioblastoma (GBM) cells, which are notoriously resistant to apoptosis.

View Article and Find Full Text PDF

Copper-coordination driven brain-targeting nanoassembly for efficient glioblastoma multiforme immunotherapy by cuproptosis-mediated tumor immune microenvironment reprogramming.

J Nanobiotechnology

December 2024

Key Laboratory of Emergency and Trauma of Ministry of Education, Engineering Research Center for Hainan Biological Sample Resources of Major Diseases, the Hainan Branch of National Clinical Research Center for Cancer, the First Affiliated Hospital, Hainan Medical University, Haikou, 570102, China.

Limited drug accumulation and an immunosuppressive microenvironment are the major bottlenecks in the treatment of glioblastoma multiforme (GBM). Herein, we report a copper-coordination driven brain-targeting nanoassembly (TCe6@Cu/TP5 NPs) for site-specific delivery of therapeutic agents and efficient immunotherapy by activating the cGAS-STING pathway and downregulating the expression of PD-L1. To achieve this, the mitochondria-targeting triphenylphosphorus (TPP) was linked to photosensitizer Chlorin e6 (Ce6) to form TPP-Ce6 (TCe6), which was then self-assembled with copper ions and thymopentin (TP5) to obtain TCe6@Cu/TP5 NPs.

View Article and Find Full Text PDF

Survival prediction of glioblastoma patients using machine learning and deep learning: a systematic review.

BMC Cancer

December 2024

Department of Data Science, Faculty of Interdisciplinary Science and Technology, Tarbiat Modares University, Tehran, Iran.

Glioblastoma Multiforme (GBM), classified as a grade IV glioma by the World Health Organization (WHO), is a prevalent and notably aggressive form of brain tumor derived from glial cells. It stands as one of the most severe forms of primary brain cancer in humans. The median survival time of GBM patients is only 12-15 months, making it the most lethal type of brain tumor.

View Article and Find Full Text PDF

Intraoperative assessment of tumor margins can be challenging; as neoplastic cells may extend beyond the margins seen on preoperative imaging. Real-time intraoperative ultrasonography (IOUS) has emerged as a valuable tool for delineating tumor boundaries during surgery. However, concerns remain regarding its ability to accurately distinguish between tumor margins, peritumoral edema, and normal brain tissue.

View Article and Find Full Text PDF

The dual role of calnexin on malignant progression and tumor microenvironment in glioma.

Sci Rep

December 2024

National Engineering Research Center for Miniaturized Detection Systems, College of Life Sciences, Northwest University, Xi'an, Shaanxi, China.

Glioma is the most common malignant brain tumor. Previous studies have reported that calnexin (CANX) is significantly up-regulated in a variety of malignant tumors, including glioma, but its biological function and mechanism in glioma is still unclear. In this study, differentially expressed proteins in 3 primary glioblastoma multiforme (GBM) tissues and 3 paracancer tissues were identified by liquid chromatography-tandem mass spectrometry-based proteomic and bioinformatic analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!