Object: Excitatory amino acid (EAA) uptake by neurons and glia acts synergistically with stereoselective transport across the blood-brain barrier (BBB) to maintain EAA homeostasis in the brain. The endogenous neuroprotectant adenosine counteracts many aspects of excitotoxicity by increasing cerebral blood flow and by producing pre- and postsynaptic actions on neurons. In the present study, the authors explored the effect of adenosine on EAA transport across the BBB.
Methods: The effects of adenosine on the permeability of the BBB and transport of aspartate and glutamate across the BBB were studied in a well-characterized isolated penetrating cerebral arteriole preparation suitable for simultaneous investigations of changes in diameter and permeability. At concentrations within the physiological to low pathophysiological range (10(-7)-10(-6) M), the net vectorial transport of [3H]L-glutamate or [3H]L-aspartate from blood to brain was significantly attenuated, whereas there was no effect of adenosine on paracellular BBB permeability to [14C]sucrose or [3H]D-aspartate. With higher concentrations of adenosine (10(-4) M and 10(-3) M) the net vectorial transport of [3H]L-glutamate and [3H]Laspartate returned toward baseline. At 10(-3) M, the permeability to [14C]sucrose was significantly altered, indicating a breakdown in the BBB. The effect of adenosine (10(-6) M) was blocked by theophylline, a blocker of the A1 and A2 receptors of adenosine.
Conclusions: Adenosine-mediated modulation of glutamate and aspartate transport across the BBB is a novel physiological finding.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3171/jns.2003.98.3.0554 | DOI Listing |
Neurochem Res
January 2025
Huazhong University of Science and Technology, Tongji Medical College, Wuhan, Hubei, 430000, China.
Epilepsy (EP) is a neurological disorder characterized by abnormal, sudden neuronal discharges. Seizures increase extracellular glutamate levels, causing excitotoxic damage. Glutamate transporter type 1 (GLT-1) and its human homologue excitatory amino acid transporter-2 (EAAT2) clear 95% of extracellular glutamate.
View Article and Find Full Text PDFJAMA Netw Open
January 2025
Center for OCD and Related Disorders, Massachusetts General Hospital, Boston.
Importance: Obsessive-compulsive and related disorders (OCRDs) encompass various neuropsychiatric conditions that cause significant distress and impair daily functioning. Although standard treatments are often effective, approximately 60% of patients may not respond adequately, underscoring the need for novel therapeutic approaches.
Objective: To evaluate improvement in OCRD symptoms associated with glutamatergic medications as monotherapy or as augmentation to selective serotonin reuptake inhibitors, with a focus on double-blind, placebo-controlled randomized clinical trials (RCTs).
Neurosci Res
December 2024
Laboratory of Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan; Laboratory of Neural Information Processing, Institute for Advanced Research, Nagoya University, Nagoya, Japan; PRESTO/CREST, Japan Science and Technology Agency, Saitama, Japan. Electronic address:
Despite the crucial role of synaptic connections and neural activity in the development and organization of cortical circuits, the mechanisms underlying the formation of functional synaptic connections in the developing human cerebral cortex remain unclear. We investigated the development of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic transmission using human cortical organoids (hCOs) derived from induced pluripotent stem cells. Two-photon Ca⁺ imaging revealed an increase in the frequency and amplitude of spontaneous activity in hCOs on day 80 compared to day 50.
View Article and Find Full Text PDFJ Clin Psychiatry
December 2024
Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
Pharmacotherapy plays a crucial role in treating attention-deficit/ hyperactivity disorder (ADHD). However, current medications for ADHD have limitations and potential adverse effects. Glutamate, a neurotransmitter that directly and indirectly modulates dopamine neurotransmission, is considered a new therapeutic target for ADHD.
View Article and Find Full Text PDFChaos
December 2024
The Medical Big Data Research Center and The School of Mathematics, Northwest University, Xi'an 710127, China.
Glutamate (Glu) is a crucial excitatory neurotransmitter in the central nervous system that transmits brain information by activating excitatory receptors on neuronal membranes. Physiological studies have demonstrated that abnormal Glu metabolism in astrocytes is closely related to the pathogenesis of epilepsy. The astrocyte metabolism processes mainly involve the Glu uptake through astrocyte EAAT2, the Glu-glutamine (Gln) conversion, and the Glu release.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!