Object: The authors compared the biomechanical stability resulting from the use of a new technique for occipitoatlantal motion segment fixation with an established method and assessed the additional stability provided by combining the two techniques.

Methods: Specimens were loaded using nonconstraining pure moments while recording the three-dimensional angular movement at occiput (Oc)-C1 and C1-2. Specimens were tested intact and after destabilization and fixation as follows: 1) Oc-C1 transarticular screws plus C1-2 transarticular screws; 2) occipitocervical transarticular (OCTA) plate in which C1-2 transarticular screws attach to a loop from Oc to C-2; and (3) OCTA plate plus Oc-C1 transarticular screws. Occipitoatlantal transarticular screws reduced motion to well within the normal range. The OCTA loop and transarticular screws allowed a very small neutral zone, elastic zone, and range of motion during lateral bending and axial rotation. The transarticular screws, however, were less effective than the OCTA loop in resisting flexion and extension.

Conclusions: Biomechanically, Oc-C1 transarticular screws performed well enough to be considered as an alternative for Oc-C1 fixation, especially when instability at C1-2 is minimal. Techniques for augmenting these screws posteriorly by using a wired bone graft buttress, as is currently undertaken with C1-2 transarticular screws, may be needed for optimal performance.

Download full-text PDF

Source
http://dx.doi.org/10.3171/spi.2003.98.2.0202DOI Listing

Publication Analysis

Top Keywords

transarticular screws
40
oc-c1 transarticular
12
c1-2 transarticular
12
transarticular
11
screws
11
octa plate
8
octa loop
8
oc-c1
5
c1-2
5
craniovertebral junction
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!