The problem of artificial gravity (AG) in long-term missions is one of the hottest, as the existing countermeasures do not fully cope with the negative consequences of weightlessness. From two variants of AG creation--rotation of space systems around of their mass center or short radius centrifuge (SAC)--the preference is given to SAC, as technically easier variant for realization. However, the rotation of a person on SAC can cause not only positive, but also negative effects. The purpose of the present study was to perform the analysis of data of researches on a problem of AG generated by a of SAC, executed in Russia during last 20 years, and to state modern views on application of SAC as a mean of AG creation in long piloted missions.
Download full-text PDF |
Source |
---|
J Environ Manage
January 2025
Hubei Subsurface Multi-scale Imaging Key Laboratory, School of Geophysics and Geomatics, China University of Geosciences, Wuhan, China.
Groundwater plays a key role in the water cycle and is used to meet industrial, agricultural, and domestic water demands. High-resolution modeling of groundwater storage is often challenging due to the limitations of observation techniques and mathematical methods. In this study, two machine learning (ML) algorithms, namely random forest (RF) and artificial neural networks (ANNs), were employed to estimate groundwater level anomaly (GWLA) and groundwater storage anomaly (GWSA) with a 0.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Nephrology, State Key Laboratory of Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, National Clinical Research Center for Kidney Diseases, Nephrology Institute of the Chinese People's Liberation Army, Chinese PLA General Hospital, Beijing, China.
Spaceflight-induced multi-organ dysfunction affects the health of astronauts and the safety of in-orbit flight. However, the effect of microgravity on the kidney and the underlying mechanisms are unknown. In the current study, we used a hindlimb unweighting (HU) animal model to simulate microgravity and employed histological analysis, ischemia-reperfusion experiments, renal ultrasonography, bioinformatics analysis, isometric force measurement, and other molecular experimental settings to evaluate the effects of microgravity on the kidneys and the underlying mechanisms involved in this transition.
View Article and Find Full Text PDFACS Nano
January 2025
Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, P. R. China.
Along with the development of miniaturization, integration, and high power of electronic chips in the 5G and artificial intelligence era and their urgent need for technologies enabled to solve high heat flux dissipation in limited space, investigating bioinspired extreme superwettability surfaces with high-efficiency condensation heat transfer (CHT) performance has attracted great interest in academic and industrial communities. Compared with filmwise condensation of flat hydrophilic surfaces featured with continuous liquid films, dropwise condensation of flat hydrophobic surfaces is a more efficient type of energy transport way. However, discrete condensate drops can only shed off the hydrophobic flat surfaces under gravity until their sizes reach the capillary length of liquid, e.
View Article and Find Full Text PDFJ Sports Sci
January 2025
Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, TX, USA.
Unlabelled: Dehydration-induced increased plasma osmolality (P) alters whole body fluid balance which could alter resistance exercise (RE) induced intramuscular (IM) fluid shift.
Purpose: The purpose of the current report was to investigate the effect of dehydration on RE-induced change in whole body fluid balance in resistance trained (RT) men.
Methods: Fourteen RT men performed two identical RE sessions, either in a hydrated (EUHY) or dehydrated (DEHY) state induced by a 24 hr fluid restriction.
Life Sci Space Res (Amst)
February 2025
Studio Ozark Henry, Conterdijk 23, Wulpen, Belgium. Electronic address:
Spaceflight occurs under extreme environmental conditions that pose significant risks to the physical and mental health and well-being of astronauts. Certain factors, such as prolonged isolation, monotony, disrupted circadian rhythms, heavy workload, and weightlessness in space, can trigger psychological distress and may contribute to a variety of mental health problems, including mood and anxiety disturbances. Recent findings regarding spaceflight-associated alterations in cerebrospinal fluid spaces, demonstrating enlargement of the brain's perivascular spaces from preflight to postflight, at least suggest reduced glymphatic clearance in microgravity, and have raised concerns about long-term cognitive health in astronauts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!