Background: The therapeutic efficacy of intratumoral instillation of genetically engineered, CYP2B1-expressing, microencapsulated cells in combination with ifosfamide had been previously demonstrated in xenografted human pancreatic ductal carcinomas [Gene Ther 1998;5:1070-1078]. Prior to a clinical study, the feasibility of an intra-arterial application of microencapsulated cells to the pancreas and its consequences to the organ had to be evaluated.

Material And Methods: Microencapsulated, CYP2B1-producing cells were instilled both in vivo (transfemoral angiographical access) and in vitro (perfusion model) in the splenic lobe of the pig pancreas. In vivo, animals were monitored clinically for 7 days, then treated with ifosfamide and sacrificed. In vitro, ifosfamide was administered intra-arterially.

Results: In all animals, 100 microcapsules could be instilled safely via the femoral route without clinical, biochemical or histological signs of pancreatitis. Histological examination revealed partial obstruction of small arteries by the capsules, without causing any parenchymal damage. In vitro, instillation reduced blood flow by half. Ifosfamide, also in combination with the capsules, did not add any damage to the pancreas.

Conclusion: Intra-arterial instillation of microencapsulated cells to the pig pancreas is feasible and safe. Neither pancreatitis, foreign body reactions nor circulatory disturbances were observed. Clinical application of this genetically enhanced chemotherapeutic method seems possible.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000069147DOI Listing

Publication Analysis

Top Keywords

pig pancreas
12
microencapsulated cells
12
intra-arterial instillation
8
instillation microencapsulated
8
cells pig
8
microencapsulated
5
cells
5
microencapsulated ifosfamide-activating
4
ifosfamide-activating cells
4
pancreas
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!