The structure-based design, synthesis, and screening of a glucuronic acid scaffold library of affinity ligands directed toward the catalytic cleft on porcine pancreas alpha-amylase are presented. The design was based on the simulated docking to the enzyme active site of 53 aryl glycosides from the Available Chemicals Directory (ACD) selected by in silico screening. Twenty-three compounds were selected for synthesis and screened in solution for binding toward alpha-amylase using nuclear magnetic resonance techniques. The designed molecules include a handle outside of the binding site to allow their attachment to various surfaces with minimal loss of binding activity. After initial screening in solution, one affinity ligand was selected, immobilized to Sepharose (Amersham Biosciences), and evaluated as a chromatographic probe. A column packed with ligand-coupled Sepharose specifically retained the enzyme, which could be eluted by a known inhibitor.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2323846PMC
http://dx.doi.org/10.1110/ps.0236603DOI Listing

Publication Analysis

Top Keywords

design synthesis
8
affinity ligands
8
rational design
4
synthesis verification
4
verification affinity
4
ligands protein
4
protein surface
4
surface cleft
4
cleft structure-based
4
structure-based design
4

Similar Publications

Importance: Ultraprocessed foods (UPF), characterized as shelf-stable but nutritionally imbalanced foods, pose a public health crisis worldwide. In adults, UPF consumption is associated with increased obesity risk, but findings among children are inconsistent.

Objectives: To examine the associations among UPF intake, anthropometric adiposity indicators, and obesity status in Canadian children.

View Article and Find Full Text PDF

Importance: Approximately one-third of patients with ERBB2 (formerly HER2 or HER2/neu)-positive (ERBB2+) metastatic breast cancer (MBC) develop brain metastasis. It is unclear whether patients with disease limited to the central nervous system (CNS) have different outcomes and causes of death compared with those with concomitant extracranial metastasis.

Objective: To assess overall survival (OS) and CNS-related mortality among patients with ERBB2+ breast cancer and a diagnosis of CNS disease by disease distribution (CNS only vs CNS plus extracranial metastasis).

View Article and Find Full Text PDF

Objectives: Sepsis is a life-threatening medical emergency, with a profound healthcare burden globally. Its pathophysiology is complex, heterogeneous and temporally dynamic, making diagnosis challenging. Medical management is predicated on early diagnosis and timely intervention.

View Article and Find Full Text PDF

Stress Relaxation and Creep Response of Glassy Hydrogels with Dense Physical Associations.

ACS Appl Mater Interfaces

January 2025

Ministry of Education Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.

Various glassy hydrogels are developed by forming dense physical associations within the matrices, which exhibit forced elastic deformation and possess high stiffness, strength, and toughness. Here, the viscoplastic behaviors of the glassy hydrogel of poly(methacrylamide--methacrylic acid) are investigated by stress relaxation and creep measurements. We found that the characteristic time of stress relaxation of the glassy gel is much smaller than that of amorphous polymers.

View Article and Find Full Text PDF

Exopolysaccharides (EPS) produced by lactic acid bacteria with immunomodulatory potential are promising natural food additives. This study employs small-scale, 250 mL bioreactors combined with a central composite design to optimise two important bioprocess parameters, namely temperature and airflow, to achieve high yields of biomass and EPS from Lacticaseibacillus rhamnosus LRH30 (L. rhamnosus LRH30).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!