Depsipeptide is in clinical trials for chronic lymphocytic leukemia (CLL) on the basis of earlier observations demonstrating selective in vitro activity in CLL. We sought to determine the relationship of histone H3 and H4 acetylation, inhibition of histone deacetylase, and apoptosis observed in CLL cells to justify a pharmacodynamic end point in these clinical trials. We demonstrate that in vitro depsipeptide induces histone H3 and H4 acetylation and histone deacetylase enzyme inhibition at concentrations corresponding to the LC50 (concentration producing 50% cell death) for cultured CLL cells (0.038 microM depsipeptide). The changes in histone acetylation are lysine specific, involving H4 K5, H4 K12, and H3 K9, and to a lesser extent H4 K8, but not H4 K16 or H3 K14. Depsipeptide-induced apoptosis is caspase dependent, selectively involving the tumor necrosis factor (TNF) receptor (extrinsic pathway) initiating caspase 8 and effector caspase 3. Activation of caspase 8 was accompanied by the down-regulation of cellular FLICE-inhibitory protein (c-FLIP, I-FLICE) without evidence of Fas (CD95) up-regulation. Changes in other apoptotic proteins, including Bcl-2, Bax, Mcl-1, and X-linked inhibitor of apoptosis (XIAP), were not observed. Our results demonstrate a relationship between target enzyme inhibition of histone deacetylase, histone H3 and H4 acetylation, and apoptosis involving the TNF-receptor pathway of apoptosis that is not used by other therapeutic agents in CLL. These data suggest use of histone H3 and H4 acetylation, inhibition of histone deacetylase, and down-regulation of FLIP as pharmacodynamic end points for further evaluation of this drug in patients.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2002-12-3794DOI Listing

Publication Analysis

Top Keywords

histone acetylation
24
histone deacetylase
20
inhibition histone
16
acetylation inhibition
12
histone
11
induces histone
8
chronic lymphocytic
8
lymphocytic leukemia
8
activation caspase
8
clinical trials
8

Similar Publications

IL-7 promotes integrated glucose and amino acid sensing during homeostatic CD4 T cell proliferation.

Cell Rep

January 2025

School of Infection, Inflammation and Immunology, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK. Electronic address:

Interleukin (IL)-7 promotes T cell expansion during lymphopenia. We studied the metabolic basis in CD4 T cells, observing increased glucose usage for nucleotide synthesis and oxidation in the tricarboxylic acid (TCA) cycle. Unlike other TCA metabolites, glucose-derived citrate does not accumulate upon IL-7 exposure, indicating diversion into other processes.

View Article and Find Full Text PDF

The p53 protein is regarded as the "Guardian of the Genome," but its mutation is tumor progression and present in more than half of malignant tumors. The pro-metastatic property of mutant p53 makes a strong argument for targeting mutant p53 with new therapeutic strategies. However, mutant p53 was considered as a challenging target for drug discovery due to the lack of small molecular binding pockets.

View Article and Find Full Text PDF

High levels of histone acetylation modifications promote the formation of PGCs.

Poult Sci

January 2025

College of Animal Science and Technology, Yangzhou University, Jiangsu Province Key Laboratory of Animal Breeding and Molecular Design, Yangzhou 225009 Jiangsu, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009 Jiangsu, PR China. Electronic address:

This study investigates the role of histone acetylation in the differentiation of chicken embryonic stem cells (ESCs) into primordial germ cells (PGCs). Transcriptomic sequencing was used to analyze differentially expressed genes during this differentiation process, with functional annotation identifying genes associated with histone acetylation. To explore the role of acetylation, acetate and an acetyltransferase inhibitor (ANAC) were added to the ESCs induction medium.

View Article and Find Full Text PDF

Background: The mitochondrial pyruvate carrier (MPC), a central metabolic conduit linking glycolysis and mitochondrial metabolism, is instrumental in energy production. However, the role of the MPC in cancer is controversial. In particular, the importance of the MPC in glioblastoma (GBM) disease progression following standard temozolomide (TMZ) and radiation therapy (RT) remains unexplored.

View Article and Find Full Text PDF

Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi.

Int J Mol Sci

December 2024

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!