ATP stimulates the release of prostacyclin from perfused veins isolated from the hamster hindlimb.

Am J Physiol Regul Integr Comp Physiol

Dept. of Physiology and Biophysics, Univ. of Mississippi Medical Center, 2500 N. State St., Jackson, MS 39216, USA.

Published: July 2003

ATP-stimulated prostacyclin release from veins was investigated using epigastric veins isolated from hamsters. Veins were perfused with MOPS-buffered physiological salt solution (PSS). ATP was administered into the perfusate, and the bath solution (MOPS-PSS) was collected and assayed for the presence of the stable prostacyclin metabolite 6-keto-PGF1alpha. ATP (100 microM) resulted in reproducible increases in bath concentration from 73 +/- 22 to 279 +/- 50 pg/ml (P < 0.05, n = 5). This response was abolished by indomethacin (10 microM, P < 0.05). To ascertain whether the endothelium was the source of prostacyclin, endothelium was disrupted using air (n = 10) or deoxycholic acid (n = 6). Perfusion with air significantly reduced (P < 0.05) but did not completely abolish ATP-stimulated release of prostacyclin, while deoxycholic acid totally abolished the response (P < 0.05). The nonselective P2 receptor antagonist reactive blue 2 (100 microM) attenuated ATP-mediated release of prostacyclin but did not significantly alter ACh-stimulated release of prostacyclin. The nonselective adenosine receptor antagonist xanthine amine congener (1 microM) had no effect on ATP-stimulated release, and adenosine did not stimulate the release of prostacyclin. These results show that increases in intraluminal concentration of ATP stimulate abluminal release of prostacyclin from the venous endothelium. This effect is mediated by P2 receptors while adenosine and its receptors are not involved in this response.

Download full-text PDF

Source
http://dx.doi.org/10.1152/ajpregu.00468.2002DOI Listing

Publication Analysis

Top Keywords

release prostacyclin
24
prostacyclin
9
release
8
veins isolated
8
100 microm
8
deoxycholic acid
8
atp-stimulated release
8
receptor antagonist
8
atp
4
atp stimulates
4

Similar Publications

Background: Microfat and nanofat are commonly used in various surgical procedures, from skin rejuvenation to scar correction, to contribute to tissue regeneration. Microfat contains mainly adipocytes and is well suited for tissue augmentation, and nanofat is rich in lipids, adipose-derived stem cells, microvascular fragments, and growth factors, making it attractive for aesthetic use. The authors have previously demonstrated that the mechanical processing of microfat into nanofat significantly changes its proteomic profile.

View Article and Find Full Text PDF

Background: The exposure to artificial gravity (AG) through human centrifugation is the basis of the treatment called gravity therapy (GT), in which the mechanical stimulation over the vessel wall, induces the synthesis and release of prostacyclin. It has been used for more than four decades in Uruguay in the treatment of different vascular-based pathologies. In patients with systemic sclerosis (SSc) it has shown good benefits and excellent safety profile over the years.

View Article and Find Full Text PDF

Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.

View Article and Find Full Text PDF

is a plant of the Euphorbiaceae family, used in traditional medicine to treat numerous diseases, including high blood pressure. The aim of this study is to evaluate the antioxidant and vasorelaxant effects of the aqueous extract of the stem bark of . The pharmacological studies were carried out using the aqueous extract obtained by infusion.

View Article and Find Full Text PDF

Background: Changes in K channel expression/function are associated with disruption of vascular reactivity in several pathological conditions, including hypertension, diabetes, and atherosclerosis. Gasotransmitters achieve part of their effects in the organism by regulating ion channels, especially K channels. Their involvement in hydrogen sulfide (HS)-mediated vasorelaxation is still unclear, and data about human vessels are limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!