The operation of capacitative Ca(2+) entry (CCE) in human breast cancer (SKBR3) and non-tumorigenic (HBL100) cell lines was investigated as an alternative Ca(2+) entry route in these cells. Ca(2+) readdition after thapsigargin-induced store depletion showed activation of CCE in both cell lines. SKBR3 cells exhibited retarded store depletion and CCE decay kinetics compared to the non-tumorigenic HBL100 cells, suggesting alterations in Ca(2+) homeostasis. CCE was also highly permeable to Mn(2+) and to a lesser extent to Sr(2+), but not to Ba(2+). In HBL100 cells, CCE is contributed (30%) by a Ca(2+)/Mn(2+) permeable route insensitive to low (1 microM) Gd(3+) and a Ca(2+)/Sr(2+)/Mn(2+) permeable non-selective pathway (70%) sensitive to 1 microM Gd(3+). In SKBR3 cells, the relative contribution to CCE of both routes was opposite to that in non-tumorigenic cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.10471 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!