Previous studies of the desert shrub Encelia farinosa have shown variation of morpholological and physiological integration that appears to match environmental differences among populations. Such findings led us to ask if there is a genetic basis for such differentiation that may be related to physiological control of intercellular CO(2) concentrations as indicated by carbon isotope discrimination (Delta) values, and if genetic variance for Delta is detectable within populations. Under common environment conditions, Delta values were compared between two populations of E. farinosa from desert regions with contrasting rainfall patterns: Superior, Ariz., a region with high annual rainfall and droughts of short duration, and Oatman, Ariz. a region with lower annual rainfall and longer drought periods. Superior plants had consistently greater mean Delta values than Oatman plants across a broad range of soil water potentials, indicating that there is a genetic basis for Delta variation between these populations. At the intrapopulation level only Oatman plants showed detectable genetic variance of Delta based on: (1) consistent individual-rank values for Delta among soil-drought stages, and (2) evidence of heritable genetic variance for Delta during one drought stage. No genetic variance in Delta was evident for the Superior population. It is hypothesized that the high spatio-temporal heterogeneity of water availability at Oatman may facilitate the maintenance of genetic variance for carbon isotope discrimination within this population. Both the inter- and intra-population level findings suggest that selection associated with rainfall and drought has resulted in genetic divergence of the physiological factors involved in Delta determination for these populations. There appears to be strong differences of water-use and carbon-gain strategies among populations, and broader functional breadth among plants in the habitat of greatest environmental heterogeneity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00442-002-1129-8DOI Listing

Publication Analysis

Top Keywords

genetic variance
20
variance delta
16
carbon isotope
12
isotope discrimination
12
delta values
12
delta
10
encelia farinosa
8
genetic
8
genetic basis
8
ariz region
8

Similar Publications

Is increased mutation driving genetic diversity in dogs within the Chornobyl exclusion zone?

PLoS One

December 2024

Department of Molecular Biomedical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America.

Environmental contamination can have lasting impacts on surrounding communities, though the long-term impacts can be difficult to ascertain. The disaster at the Chornobyl Nuclear Power Plant in 1986 and subsequent remediation efforts resulted in contamination of the local environment with radioactive material, heavy metals, and additional environmental toxicants. Many of these are mutagenic in nature, and the full effect of these exposures on local flora and fauna has yet to be understood.

View Article and Find Full Text PDF

Disease networks offer a potential road map of connections between diseases. Several studies have created disease networks where diseases are connected either based on shared genes or Single Nucleotide Polymorphism (SNP) associations. However, it is still unclear to which degree SNP-based networks map to empirical, co-observed diseases within a different, general, adult study population spanning over a long time period.

View Article and Find Full Text PDF

Metastasis in patients with oral squamous cell carcinoma has been associated with a poor prognosis. However, sensitive and reliable tests for monitoring their occurrence are unavailable, with the exception of PET-CT. Circulating tumor cells and cell-free DNA have emerged as promising biomarkers for determining treatment efficacy and as prognostic predictors in solid tumors such as breast cancer and colorectal cancer.

View Article and Find Full Text PDF

Introduction: Hypoalgesic inflammatory bowel disease (IBD) may provide critical insights into human abdominal pain. This condition was previously associated with homozygosity for a polymorphism (rs6795970, A1073V; 1073 val/val ) related to Na v 1.8, a voltage-gated sodium channel preferentially expressed on nociceptors.

View Article and Find Full Text PDF

Genetic Association of Juvenile Idiopathic Arthritis With Adult Rheumatic Disease.

JAMA Netw Open

December 2024

Department of Cell Biology, The Province and Ministry Cosponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.

Importance: Patients with juvenile idiopathic arthritis (JIA) may develop adult rheumatic diseases later in life, and prolonged or recurrent disease activity is often associated with substantial disability; therefore, it is important to identify patients with JIA at high risk of developing adult rheumatic diseases and provide specialized attention and preventive care to them.

Objective: To elucidate the full extent of the genetic association of JIA with adult rheumatic diseases, to improve treatment strategies and patient outcomes for patients at high risk of developing long-term rheumatic diseases.

Design, Setting, And Participants: In this genetic association study of 4 disease genome-wide association study (GWAS) cohorts from 2013 to 2024 (JIA, rheumatoid arthritis [RA], systemic lupus erythematosus [SLE], and systemic sclerosis [SSc]), patients in the JIA cohort were recruited from the US, Australia, and Norway (with a UK cohort included in the meta-analyzed cohort), while patients in the other 3 cohorts were recruited from US and Western European countries.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!