B cell complement receptor 2 transfer reaction.

J Immunol

Department of Biochemistry and Molecular Genetics, University of Virginia Health Sciences Center, Charlottesville, VA 22908-0733, USA.

Published: April 2003

The B cell C receptor specific for C3dg (CR2) shares a number of features with the primate E C receptor (CR1). Previously, we have demonstrated, both in vitro and in animal models, that immune complexes (IC) bound to primate E CR1, either via C opsonization or by means of bispecific mAb complexes, can be transferred to acceptor macrophages in a process that also removes CR1 from the E. We have now extended this paradigm, the transfer reaction, to include B cell CR2. We used both flow cytometry and fluorescence microscopy to demonstrate that IC bound to Raji cell CR2, either via C opsonization or through the use of an anti-CR2 mAb, are transferred to acceptor THP-1 cells. This reaction, which appears to require Fc recognition of IgG bound to Raji cell CR2, also leads to transfer of CR2. Additional support for the B cell transfer reaction is provided in a prototype study in a monkey model in which IC bound to B cell CR2 are localized to the spleen. These findings may have important implications with respect to defining the role of C in IC handling during the normal immune response.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.170.7.3671DOI Listing

Publication Analysis

Top Keywords

cell cr2
16
transfer reaction
12
transferred acceptor
8
bound raji
8
raji cell
8
cell
7
cr2
6
cell complement
4
complement receptor
4
transfer
4

Similar Publications

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization.

Cell Rep

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou 510060, China. Electronic address:

Epstein-Barr virus (EBV) is an oncogenic virus associated with multiple lymphoid malignancies and autoimmune diseases. During infection in B cells, EBV uses its major glycoprotein gp350 to recognize the host receptor CR2, initiating viral attachment, a process that has lacked direct structural evidence for decades. In this study, we resolved the structure of the gp350-CR2 complex, elucidated their key interactions, and determined the site-specific N-glycosylation map of gp350.

View Article and Find Full Text PDF

Immune-mediated liver and biliary conditions, such as IgG4-related pancreatobiliary disease (IgG4-PB) and a subset of primary sclerosing cholangitis (PSC- high(h)IgG4), exhibit increased IgG4 levels in the blood. The relative expression of IgG4+ and IgG1+ B cells in the blood and the expression of complement and Fc receptors on these IgG1+ and IgG4+ B cells in IgG4-PB and PSC have not been previously described. We hypothesised that the patterns of expression of these cells and their receptors would differ, are relevant to disease pathogenesis and may represent therapeutic targets.

View Article and Find Full Text PDF

Background: The onset of atopic dermatitis (AD) is complex, and its specific pathological mechanisms have not yet been fully elucidated.

Methods: Using circulating multi-omics as the exposure factors and AD as the outcome, we conducted univariable MR analysis. The circulating multi-omics data included immunomics (731 immune cell types), proteomics (4907 plasma proteins), metabolomics (1400 metabolites and 486 additional metabolites), and 91 inflammatory factors.

View Article and Find Full Text PDF
Article Synopsis
  • Harmful algal blooms (HABs), especially those from toxin-producing microalgae like Prorocentrum micans, are a recurring issue in Patagonian fjords, and a significant HB-HAB occurred in Northwest Chilean Patagonia during February-March 2022.
  • Observations showed a dramatic increase in P. micans cell density from low levels in January to a peak of over 8.3 x 10 cells/mL by mid-February, associated with warmer sea temperatures and varying salinity.
  • Satellite images and oceanographic modeling revealed that water currents and temperature variations in the Gulf of Ancud supported the development and maintenance of this harmful algal bloom, indicating a hotspot for both HABs and HB-HAB
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!