Fundamental aspects of electrolyte chemistry were used to design an appropriate dissolution medium with the capacity to maintain sink conditions throughout the test. Dissolution of various bolus dosage forms was studied using USP Apparatus II at various stirring speeds. Complete dissolution of each drug in the designed medium was achieved, and there is evidence that such a dissolution test could be discriminating. This review details the development of potentially discriminating in vitro dissolution tests for veterinary boluses using USP Apparatus II and examines the potential role of such testing during product quality assessments, in the evaluation of postapproval manufacturing changes and for the establishment of the generic equivalence of veterinary products.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2751324 | PMC |
http://dx.doi.org/10.1208/ps040435 | DOI Listing |
Anal Chim Acta
February 2025
Department of Biochemistry and Molecular Biology, Chang Gung University, Taoyuan, 333, Taiwan; Clinical Proteomics Core Laboratory, LinKou Chang Gung Memorial Hospital, Taoyuan, 333423, Taiwan. Electronic address:
Background: Tissue metabolomics analysis, alongside genomics and proteomics, offers crucial insights into the regulatory mechanisms of tumorigenesis. To enhance metabolite detection sensitivity, chemical isotope labeling (CIL) techniques, such as dansylation, have been developed to improve metabolite separation and ionization in mass spectrometry (MS). However, the dissolution of hydrophobic derivatized metabolites in solvents with high acetonitrile content limits the use of liquid chromatography (LC) systems with small-volume reversed-phase (RP) columns.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Architecture, Faculty of Science and Technology, Tokyo University of Science, Noda City 278-8510, Japan.
A fundamental study has been conducted on the effective utilization of rice husk ash (RHA) in concrete. RHA is an agricultural byproduct characterized by silicon dioxide as its main component, with a content of 90% or more and a porous structure that absorbs water during mixing, thereby reducing fluidity. The quality of RHA varies depending on the calcination environment; however, the effect is not consistent.
View Article and Find Full Text PDFACS Catal
January 2025
Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00 Prague 8, Czech Republic.
Achieving the optimal balance between cost-efficiency and stability of oxygen reduction reaction (ORR) catalysts is currently among the key research focuses aiming at reaching a broader implementation of proton-exchange membrane fuel cells (PEMFCs). To address this challenge, we combine two well-established strategies to enhance both activity and stability of platinum-based ORR catalysts. Specifically, we prepare ternary PtNi-Au alloys, where each alloying element plays a distinct role: Ni reduces costs and boosts ORR activity, while Au enhances stability.
View Article and Find Full Text PDFDent Mater
January 2025
Department of Restorative Dentistry, University of Manitoba, Winnipeg, MB, R3E 0W2, Canada.
Objective: This study aimed to evaluate the chemical solubility (CS) and conduct a comprehensive physicochemical characterization of several experimental and commercial lithium silicate-based glass-ceramics towards an understanding of the chemical processes governing dissolution in these glass-ceramics.
Methodology: Glass-ceramic (GC) samples were categorized into two groups: experimental materials featuring lithium metasilicate crystals (GCE1 and GCE2); and five commercial brands relying mostly on lithium disilicate (Celtra®Duo, IPS e.max®CAD, Straumann®n!ce®, CEREC Tessera™, and VITA Suprinity®).
Nat Rev Chem
January 2025
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, China.
Aqueous zinc-based batteries have garnered the attention of the electrochemical energy storage community, but they suffer from electrolytes freezing and sluggish kinetics in cold environments. In this Review, we discuss the key parameters necessary for designing anti-freezing aqueous zinc electrolytes. We start with the fundamentals related to different zinc salts and their dissolution and solvation behaviours, by highlighting the effects of anions and additives on salt solubility, ion diffusion and freezing points.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!