Integrating 'top-down" and "bottom-up" mass spectrometric approaches for proteomic analysis of Shewanella oneidensis.

J Proteome Res

Organic and Biological Mass Spectrometry Group, Chemical Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, Tennessee 37831-6365, USA.

Published: April 2003

Here we present a comprehensive method for proteome analysis that integrates both intact protein measurement ("top-down") and proteolytic fragment characterization ("bottom-up") mass spectrometric approaches, capitalizing on the unique capabilities of each method. This integrated approach was applied in a preliminary proteomic analysis of Shewanella oneidensis, a metal-reducing microbe of potential importance to the field of bioremediation. Cellular lysates were examined directly by the "bottom-up" approach as well as fractionated via anion-exchange liquid chromatography for integrated studies. A portion of each fraction was proteolytically digested, with the resulting peptides characterized by on-line liquid chromatography/tandem mass spectrometry. The remaining portion of each fraction containing the intact proteins was examined by high-resolution Fourier transform mass spectrometry. This "top-down" technique provided direct measurement of the molecular masses for the intact proteins and thereby enabled confirmation of post-translational modifications, signal peptides, and gene start sites of proteins detected in the "bottom-up" experiments. A total of 868 proteins from virtually every functional class, including hypotheticals, were identified from this organism.

Download full-text PDF

Source
http://dx.doi.org/10.1021/pr025508aDOI Listing

Publication Analysis

Top Keywords

"bottom-up" mass
8
mass spectrometric
8
spectrometric approaches
8
proteomic analysis
8
analysis shewanella
8
shewanella oneidensis
8
portion fraction
8
mass spectrometry
8
intact proteins
8
integrating 'top-down"
4

Similar Publications

Food poisoning outbreaks frequently involve staphylococcal enterotoxins (SEs). SEs include 33 distinct types and multiple sequence variants per SE type. Various mass spectrometry methods have been reported for the detection of SEs using a conventional bottom-up approach.

View Article and Find Full Text PDF

Extracellular matrix (ECM) from decellularized mammalian tissues has been used in many therapeutic applications. The tissue-specific composition of the ECM is critically associated with therapeutic performance. However, ECM translation needs to be improved because of the complex composition and limited understanding of ECM repairing mechanisms due partly to incomplete proteomic interrogation of ECM samples.

View Article and Find Full Text PDF

In recent years, discovery proteomics has emerged as a pivotal tool in biological research, especially when studying the intricate relationships among multiple organisms. To delve deeper into these interactions, we pioneered a bottom-up proteomics workflow. Using nanoLC-MS/MS and a label-free quantification method, this work specifically examines the differential protein expression in fleas (Ctenocephalides felis felis) that have been experimentally infected with Bartonella henselae, the causative agent of cat scratch disease (CSD).

View Article and Find Full Text PDF

Adipose tissue (AT) is a complex, multifunctional endocrine organ that plays a significant role in animal evolution and human disease. Profiling of the proteome, or the set of proteins produced by a cell or tissue at a given time, can be used to explore the myriad functions of adipose tissue and understand its role in health and disease. The main challenges of adipose tissue proteomics include the high lipid and low protein content of the tissue and association of many proteins with lipid droplets.

View Article and Find Full Text PDF

Spatial Proteomics towards cellular Resolution.

Expert Rev Proteomics

December 2024

Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, USA.

Introduction: Spatial biology is an emerging interdisciplinary field facilitating biological discoveries through the use of spatial omics technologies. Recent advancements in spatial transcriptomics, spatial genomics (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!